RESUMO
Tuberculosis remains a major health problem worldwide. Drug-resistant and hypervirulent Mycobacterium tuberculosis (Mtb) strains can lead to a hyperinflammatory response and necrotic pathology in hyper-reactive individuals that require adjunctive treatment. Plant-derived substances have been investigated for TB treatment, among which flavonoids stand out. We evaluate the anti-Mtb, anti-inflammatory and cytotoxicity activities of fractions and substances 1, 2 and 3 isolated from Erythrina verna through a bioassay guided fractionation. Seven fractions (1, 3-5 and 7-9) obtained from dichloromethane E. verna extract inhibited NO production (IC50 ≤ 15 µg/mL) with none or poor cytotoxic effect, while the fractions 4 and 5 notably reduced TNF-a production. Fractions 4, 6 and 9 suppressed Mycobacterium growth with MIC50 ≤ 20 µg/mL. Fraction 4 was the most potent due to dual biological activities. Erythratidinone and alpinumisoflavone inhibited the growth of Mtb H37Rv and hypervirulent strain in bacterial cultures (MIC50 ≤ 20 µg/mL), with erythratidinone standing out in reducing intracellular growth of Mtb H37Rv (5.8 ± 1.1 µg/mL). Alpinumisoflavone and erythratidinone were capable of inhibiting NO and TNF-α production besides showing significant inhibitory effects against Mycobacterium tuberculosis strains with low toxicity in macrophages. Both substances are promising for further studies focusing on an anti-TB dual treatment approach.
Assuntos
Erythrina , Mycobacterium tuberculosis , Anti-Inflamatórios/farmacologia , Antituberculosos/farmacologia , Flavonoides/farmacologia , Humanos , Cloreto de Metileno , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfaRESUMO
Among non-tuberculous mycobacteria, Mycobacterium kansasii is one of the most pathogenic, able to cause pulmonary disease indistinguishable from tuberculosis in immunocompetent susceptible adults. The lack of animal models that reproduce human-like lung disease, associated with the necrotic lung pathology, impairs studies of M. kansasii virulence and pathogenicity. In this study, we examined the ability of the C57BL/6 mice, intratracheally infected with highly virulent M. kansasii strains, to produce a chronic infection and necrotic lung pathology. As a first approach, we evaluated ten M. kansasii strains isolated from Brazilian patients with pulmonary disease and the reference strain M. kansasii ATCC 12478 for virulence-associated features in macrophages infected in vitro; five of these strains differing in virulence were selected for in vivo analysis. Highly virulent isolates induced progressive lung disease in mice, forming large encapsulated caseous granulomas in later stages (120-150 days post-infection), while the low-virulent strain was cleared from the lungs by day 40. Two strains demonstrated increased virulence, causing premature death in the infected animals. These data demonstrate that C57BL/6 mice are an excellent candidate to investigate the virulence of M. kansasii isolates. We observed considerable heterogeneity in the virulence profile of these strains, in which the presence of highly virulent strains allowed us to establish a clinically relevant animal model. Comparing public genomic data between Brazilian isolates and isolates from other geographic regions worldwide demonstrated that at least some of the highly pathogenic strains isolated in Brazil display remarkable genomic similarities with the ATCC strain 12478 isolated in the United States 70 years ago (less than 100 SNPs of difference), as well as with some recent European clinical isolates. These data suggest that few pathogenic clones have been widely spread within M. kansasii population around the world.