Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 309: 125764, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31771916

RESUMO

Coating fruits surface with biodegradable films obtained from starch is an alternative to delay the fruit ripening process. This study aimed to develop a biodegradable film from a polymer blend consisting of natural cassava starch, casein, and gelatin, and using sorbitol as the plasticizer. Among all the prepared biodegradable films (BFs), the one with desirable results in thickness, opacity, solubility, and water vapor transmission rate (WVTR) analyzes was based on a high concentration of starch, and casein, and low concentration of gelatin. Also, this film had the lowest solubility among all of them. Guava fruit coated with this film showed a two-day increase in shelf-life when compared to non-coated guavas. The increase in shelf-life was due to the extremely low water vapor transmission rate of the films, decreasing the fruits' mass loss, and, consequently, retarding their senescence. These results indicate that the biodegradable film is a promising material for fruit coating.


Assuntos
Caseínas/química , Filmes Comestíveis , Gelatina/química , Amido/química , Frutas/química , Permeabilidade , Psidium/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
2.
Int J Biol Macromol ; 128: 290-296, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30685306

RESUMO

Films based on cassava starch have been widely used for fruit coating; however, it is necessary to incorporate other polymers in order to improve mechanical properties, once starch only leads to highly hydrophilic films, compromising their application. In this way, a polymeric blend based on cassava starch, chitosan and gelatin was combined with a plasticizer to produce biodegradable films with satisfactory mechanical and barrier properties, in order to be used as fruit coating. The films were prepared by casting method and a statistical design of 23 was used to evaluate the effect of each polymer and what their combinations would influence over the final product. The formation of a physical blend was confirmed by FTIR. It showed low solubility, varying (10 ±â€¯2) % a (23 ±â€¯4) %, Opacity ranging from (1.06 ±â€¯0.04) to (1.55 ±â€¯0.13) AU x nm/mm, thickness from (0.20 ±â€¯0.01) mm to (0.44 ±â€¯0.03) mm and water vapor transmission rate ranging from 25 ±â€¯0.2 to 30 ±â€¯1.4 g s-1 m-2. Lower amounts of starch led to more flexible, less opaque and soluble films, while the combination of higher levels of starch and chitosan was responsible for lowering films water vapor transmission rate. Thus, the films showed interesting properties for fruit surface coating.


Assuntos
Técnicas de Química Sintética , Manihot/química , Amido/química , Fenômenos Químicos , Quitosana/química , Gelatina/química , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Solubilidade , Análise Espectral , Amido/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA