RESUMO
Melanoma, the most aggressive form of skin cancer, presents a major clinical challenge due to its tendency to metastasize and recalcitrance to traditional therapies. Despite advances in surgery, chemotherapy, and radiotherapy, the outlook for advanced melanoma remains bleak, reinforcing the urgent need for more effective treatments. Photodynamic therapy (PDT) has emerged as a promising alternative, leading to targeted tumor destruction with minimal harm to surrounding tissues. In this study, the direct and abscopal antitumor effects of PDT in a bilateral murine melanoma model were evaluated. Although only one of the two tumors was treated, effects were observed in both. Our findings revealed significant changes in systemic inflammation and alterations in CD4+ and CD8+ T cell populations in treated groups, as evidenced by blood analyses and flow cytometry. High-throughput RNA sequencing (RNA-Seq) further unveiled shifts in gene expression profiles in both treated and untreated tumors. This research sheds light on the novel antitumor and abscopal effects of nanoemulsion of aluminum chloride phthalocyanine (AlPcNE)-mediated PDT in melanoma, highlighting the potential of different PDT protocols to modulate immune responses and to achieve more effective and targeted cancer treatments.
RESUMO
Photodynamic therapy (PDT) mediated by photosensitizers loaded in nanostructures as solid lipid nanoparticles has been pinpointed as an effective and safe treatment against different skin cancers. Amazon butters have an interesting lipid composition when it comes to forming solid lipid nanoparticles (SLN). In the present report, a new third-generation photosensitizing system consisting of aluminum-phthalocyanine associated with Amazon butter-based solid lipid nanoparticles (SLN-AlPc) is described. The SLN was developed using murumuru butter, and a monodisperse population of nanodroplets with a hydrodynamic diameter of approximately 40 nm was obtained. The study of the permeation of these AlPc did not permeate the analyzed skin, but when incorporated into the system, SLN-AlPc allowed permeation of almost 100% with 8 h of contact. It must be emphasized that SLN-AlPc was efficient for carrying aluminum-phthalocyanine photosensitizers and exhibited no toxicity in the dark. Photoactivated SLN-AlPc exhibited a 50% cytotoxicity concentration (IC50) of 19.62 nM when applied to B16-F10 monolayers, and the type of death caused by the treatment was apoptosis. The exposed phospholipid phosphatidylserine was identified, and the treatment triggered a high expression of Caspase 3. A stable Amazon butter-based SLN-AlPc formulation was developed, which exhibits strong in vitro photodynamic activity on melanoma cells.