Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
iScience ; 26(9): 107620, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37694157

RESUMO

Fetal growth restriction (FGR) affects 5-10% of pregnancies, is the largest contributor to fetal death, and can have long-term consequences for the child. Implementation of a standard clinical classification system is hampered by the multiphenotypic spectrum of small fetuses with substantial differences in perinatal risks. Machine learning and multiomics data can potentially revolutionize clinical decision-making in FGR by identifying new phenotypes. Herein, we describe a cluster analysis of FGR based on an unbiased machine-learning method. Our results confirm the existence of two subtypes of human FGR with distinct molecular and clinical features based on multiomic analysis. In addition, we demonstrated that clusters generated by machine learning significantly outperform single data subtype analysis and biologically support the current clinical classification in predicting adverse maternal and neonatal outcomes. Our approach can aid in the refinement of clinical classification systems for FGR supported by molecular and clinical signatures.

2.
Magn Reson Med ; 88(2): 524-536, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315536

RESUMO

PURPOSE: Enhanced cell proliferation in tumors can be associated with altered metabolic profiles and dramatic microenvironmental changes. Downfield magnetic resonance spectroscopy (MRS) has received increasing attention due to its ability to report on labile resonances of molecules not easily detected in upfield 1 H MRS. Image-selected-in-vivo-spectroscopy-relaxation enhanced MRS (iRE-MRS) was recently introduced for acquiring short echo-time (TE) spectra. Here, iRE-MRS was used to investigate in-vivo downfield spectra in glioma-bearing mice. METHODS: Experiments were performed in vivo in an immunocompetent glioma mouse model at 9.4 T using a cryogenic coil. iRE-MRS spectra were acquired in N = 6 glioma-bearing mice (voxel size = 2.23 mm3 ) and N = 6 control mice. Spectra were modeled by a sum of Lorentzian peaks simulating known downfield resonances, and differences between controls and tumors were quantified using relative peak areas. RESULTS: Short TE tumor spectra exhibited large qualitative differences compared to control spectra. Most peaks appeared modulated, with strong attenuation of NAA (∼7.82, 7.86 ppm) and changes in relative peak areas between 6.75 and 8.49 ppm. Peak areas tended to be smaller for DF6.83 , DF7.60 , DF8.18 and NAA; and larger for DF7.95 and DF8.24 . Differences were also detected in signals resonating above 8.5 ppm, assumed to arise from NAD+. CONCLUSIONS: In-vivo downfield 1 H iRE-MRS of mouse glioma revealed differences between controls and tumor bearing mice, including in metabolites which are not easily detectable in the more commonly investigated upfield spectrum. These findings motivate future downfield MRS investigations exploring pH and exchange contributions to these differences.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioma/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Camundongos
3.
Neuroimage Clin ; 33: 102932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35026626

RESUMO

OBJECTIVES: Glioblastoma multiforme (GBM), the most aggressive glial brain tumors, can metabolize glucose through glycolysis and mitochondrial oxidation pathways. While specific dependencies on those pathways are increasingly associated with treatment response, detecting such GBM subtypes in vivo remains elusive. Here, we develop a dynamic glucose-enhanced deuterium spectroscopy (DGE 2H-MRS) approach for differentially assessing glucose turnover rates through glycolysis and mitochondrial oxidation in mouse GBM and explore their association with histologic features of the tumor and its microenvironment. MATERIALS AND METHODS: GL261 and CT2A glioma allografts were induced in immunocompetent mice and scanned in vivo at 9.4 Tesla, harnessing DGE 2H-MRS with volume selection and Marchenko-Pastur PCA (MP-PCA) denoising to achieve high temporal resolution. Each tumor was also classified by histopathologic analysis and assessed for cell proliferation (Ki67 immunostaining), while the respective cell lines underwent in situ extracellular flux analysis to assess mitochondrial function. RESULTS: MP-PCA denoising of in vivo DGE 2H-MRS data significantly improved the time-course detection (~2-fold increased Signal-to-Noise Ratio) and fitting precision (-19 ± 1 % Cramér-Rao Lower Bounds) of 2H-labelled glucose, and glucose-derived glutamate-glutamine (Glx) and lactate pools in GL261 and CT2A orthotopic tumors. Kinetic modeling further indicated inter-tumor heterogeneity of glucose consumption rate for glycolysis and oxidation during a defined epoch of active proliferation in both cohorts (19 ± 1 days post-induction), with consistent volumes (38.3 ± 3.4 mm3) and perfusion properties prior to marked necrosis. Histopathologic analysis of these tumors revealed clear differences in tumor heterogeneity between the two GBM models, aligned with metabolic differences of the respective cell lines monitored in situ. Importantly, glucose oxidation (i.e. Glx synthesis and elimination rates: 0.40 ± 0.08 and 0.12 ± 0.03 mM min-1, respectively) strongly correlated with cell proliferation across the pooled cohorts (R = 0.82, p = 0.001; and R = 0.80, p = 0.002, respectively), regardless of tumor morphologic features or in situ metabolic characteristics of each GBM model. CONCLUSIONS: Our fast DGE 2H-MRS enables the quantification of glucose consumption rates through glycolysis and mitochondrial oxidation in mouse GBM, which is relevant for assessing their modulation in vivo according to tumor microenvironment features such as cell proliferation. This novel application augurs well for non-invasive metabolic characterization of glioma or other cancers with mitochondrial oxidation dependencies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Deutério , Glioblastoma/diagnóstico por imagem , Glioma/metabolismo , Glucose/metabolismo , Glicólise , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Estresse Oxidativo , Microambiente Tumoral
4.
Sci Rep ; 11(1): 14422, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257400

RESUMO

Preeclampsia (PE) and fetal growth restriction (FGR) are both placenta-mediated disorders with unclear pathogenesis. Metabolomics of maternal and fetal pairs might help in understanding these disorders. We recruited prospectively pregnancies with normotensive FGR, PE without FGR, PE + FGR and uncomplicated pregnancies as controls. Nuclear magnetic resonance metabolomics were applied on plasma samples collected at delivery. Advanced lipoprotein, glycoprotein and choline profiling was performed using the Liposcale test. The software package Dolphin was used to quantify 24 low-molecular-weight metabolites. Statistical analysis comprised the comparison between each group of complicated pregnancies versus controls, considering 5% false discovery rate correction. Lipid profiles were altered in accordance with the clinical presentation of these disorders. Specifically, PE mothers and FGR fetuses (with or without FGR or PE, respectively) exhibited a pro-atherogenic and pro-inflammatory profile, with higher concentrations of triglycerides, remnant cholesterol (VLDL, IDL) and Glc/GalNAc-linked and lipid-associated glycoproteins compared to controls. Low-molecular-weight metabolites were extensively disturbed in preeclamptic mothers, with or without FGR. Growth restricted fetuses in the presence of PE showed changes in low-molecular-weight metabolites similar to their mothers (increased creatine and creatinine), while normotensive FGR fetuses presented scarce differences, consistent with undernutrition (lower isoleucine). Further research is warranted to clarify maternal and fetal adaptations to PE and FGR.


Assuntos
Retardo do Crescimento Fetal , Adulto , Feminino , Feto , Humanos , Metabolômica , Pré-Eclâmpsia , Gravidez
5.
Magn Reson Med ; 86(4): 2146-2155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33977522

RESUMO

PURPOSE: Bowel motion is a significant source of artifacts in mouse abdominal MRI. Fasting and administration of hyoscine butylbromide (BUSC) have been proposed for bowel motion reduction but with inconsistent results and limited efficacy assessments. Here, we evaluate these regimes for mouse abdominal MRI at high field. METHODS: Thirty-two adult C57BL/6J mice were imaged on a 9.4T scanner with a FLASH sequence, acquired over 90 min with ~19 s temporal resolution. During MRI acquisition, 8 mice were injected with a low-dose and 8 mice with a high-dose bolus of BUSC (0.5 and 5 mg/kg, respectively). Eight mice were food deprived for 4.5-6.5 hours before MRI and another group of eight mice was injected with saline during MRI acquisition. Two expert readers reviewed the images and classified bowel motion, and quantitative voxel-wise analyses were performed for identification of moving regions. After defining the most effective protocol, high-resolution T2 -weighted and diffusion-weighted images were acquired from 4 mice. RESULTS: High-dose BUSC was the most effective protocol for bowel motion reduction, for up to 45 min. Fasting and saline protocols were not effective in suppressing bowel motion. High-resolution abdominal MRI clearly demonstrated improved image quality and ADC quantification with the high-dose BUSC protocol. CONCLUSION: Our data show that BUSC administration is advantageous for abdominal MRI in the mouse. Specifically, it endows significant bowel motion reduction, with relatively short onset timings after injection (~8.5 min) and relatively long duration of the effect (~45 min). These features improve the quality of high-resolution images of the mouse abdomen.


Assuntos
Imageamento por Ressonância Magnética , Escopolamina , Abdome , Animais , Hidrocarbonetos Bromados , Camundongos , Camundongos Endogâmicos C57BL , Movimento (Física)
6.
PLoS One ; 13(12): e0208784, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30589837

RESUMO

BACKGROUND: We have used a previously reported rabbit model of fetal growth restriction (FGR), reproducing perinatal neurodevelopmental and cardiovascular impairments, to investigate the main relative changes in cerebral and cardiac metabolism of term FGR fetuses during nutrient infusion. METHODS: FGR was induced in 9 pregnant New Zealand rabbits at 25 days of gestation: one horn used as FGR, by partial ligation of uteroplacental vessels, and the contralateral as control (appropriate for gestation age, AGA). At 30 days of gestation, fasted mothers under anesthesia were infused i.v. with 1-13C-glucose (4 mothers), 2-13C-acetate (3 mothers), or not infused (2 mothers). Fetal brain and heart samples were quickly harvested and frozen down. Brain cortex and heart apex regions from 30 fetuses were studied ex vivo by HRMAS at 4°C, acquiring multinuclear 1D and 2D spectra. The data were processed, quantified by peak deconvolution or integration, and normalized to sample weight. RESULTS: Most of the total 13C-labeling reaching the fetal brains/hearts (80-90%) was incorporated to alanine and lactate (cytosol), and to the glutamine-glutamate pool (mitochondria). Acetate-derived lactate (Lac C2C3) had a slower turnover in FGR brains (~ -20%). In FGR hearts, mitochondrial turnover of acetate-derived glutamine (Gln C4) was slower (-23%) and there was a stronger accumulation of phospholipid breakdown products (glycerophosphoethanolamine and glycerophosphocholine, +50%), resembling the profile of non-infused control hearts. CONCLUSIONS: Our results indicate specific functional changes in cerebral and cardiac metabolism of FGR fetuses under nutrient infusion, suggesting glial impairment and restricted mitochondrial metabolism concomitant with slower cell membrane turnover in cardiomyocytes, respectively. These prenatal metabolic changes underlie neurodevelopmental and cardiovascular problems observed in this FGR model and in clinical patients, paving the way for future studies aimed at evaluating metabolic function postnatally and in response to stress and/or treatment.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Retardo do Crescimento Fetal/metabolismo , Coração Fetal/metabolismo , Acetatos/metabolismo , Animais , Isótopos de Carbono , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Gravidez , Coelhos , Distribuição Aleatória , Análise Espectral
7.
Sci Rep ; 8(1): 13614, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206284

RESUMO

Fetal growth may be impaired by poor placental function or maternal conditions, each of which can influence the transfer of nutrients and oxygen from the mother to the developing fetus. Large-scale studies of metabolites (metabolomics) are key to understand cellular metabolism and pathophysiology of human conditions. Herein, maternal and cord blood plasma samples were used for NMR-based metabolic fingerprinting and profiling, including analysis of the enrichment of circulating lipid classes and subclasses, as well as the number of sub-fraction particles and their size. Changes in phosphatidylcholines and glycoproteins were prominent in growth-restricted fetuses indicating significant alterations in their abundance and biophysical properties. Lipoprotein profiles showed significantly lower plasma concentrations of cholesterol-intermediate density lipoprotein (IDL), triglycerides-IDL and high-density lipoprotein (HDL) in mothers of growth-restricted fetuses compared to controls (p < 0.05). In contrast, growth-restricted fetuses had significantly higher plasma concentrations of cholesterol and triglycerides transporting lipoproteins [LDL, IDL, and VLDL, (p < 0.005; all)], as well as increased VLDL particle types (large, medium and small). Significant changes in plasma concentrations of formate, histidine, isoleucine and citrate in growth-restricted fetuses were also observed. Comprehensive metabolic profiling reveals that both, mother and fetuses of pregnancies complicated with fetal growth restriction have a substantial disruption in lipid metabolism.


Assuntos
Retardo do Crescimento Fetal/sangue , Feto/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Feto/fisiopatologia , Humanos , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Lipoproteínas VLDL/sangue , Masculino , Metaboloma/genética , Mães , Gravidez , Triglicerídeos/sangue
8.
Methods Mol Biol ; 1718: 189-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29341010

RESUMO

Proton MR spectroscopic imaging (MRSI) can provide a variety of "molecular images" from animal models of human disease, which are useful for different research purposes. This chapter describes a protocol for in vivo acquisition and analysis of MRSI data from the rodent brain.


Assuntos
Encéfalo/metabolismo , Neuroimagem Funcional/métodos , Hidrogênio/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Roedores
9.
NMR Biomed ; 30(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28272795

RESUMO

Cancer growth and proliferation rely on intracellular iron availability. We studied the effects of Deferiprone (DFP), a chelator of intracellular iron, on three prostate cancer cell lines: murine, metastatic TRAMP-C2; murine, non-metastatic Myc-CaP; and human, non-metastatic 22rv1. The effects of DFP were evaluated at different cellular levels: cell culture proliferation and migration; metabolism of live cells (time-course multi-nuclear magnetic resonance spectroscopy cell perfusion studies, with 1-13 C-glucose, and extracellular flux analysis); and expression (Western blot) and activity of mitochondrial aconitase, an iron-dependent enzyme. The 50% and 90% inhibitory concentrations (IC50 and IC90 , respectively) of DFP for the three cell lines after 48 h of incubation were within the ranges 51-67 µM and 81-186 µM, respectively. Exposure to 100 µM DFP led to: (i) significant inhibition of cell migration after different exposure times, ranging from 12 h (TRAMP-C2) to 48 h (22rv1), in agreement with the respective cell doubling times; (ii) significantly decreased glucose consumption and glucose-driven tricarboxylic acid cycle activity in metastatic TRAMP-C2 cells, during the first 10 h of exposure, and impaired cellular bioenergetics and membrane phospholipid turnover after 23 h of exposure, consistent with a cytostatic effect of DFP. At this time point, all cell lines studied showed: (iii) significant decreases in mitochondrial functional parameters associated with the oxygen consumption rate, and (iv) significantly lower mitochondrial aconitase expression and activity. Our results indicate the potential of DFP to inhibit prostate cancer proliferation at clinically relevant doses and plasma concentrations.


Assuntos
Neoplasias da Próstata/patologia , Piridonas/farmacologia , Aconitato Hidratase/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Deferiprona , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Fatores de Tempo
10.
Am J Obstet Gynecol ; 216(1): 62.e1-62.e14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27667762

RESUMO

BACKGROUND: Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. OBJECTIVE: The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. STUDY DESIGN: A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. RESULTS: Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. CONCLUSIONS: Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Lobo Frontal/metabolismo , Nascimento Prematuro , Adaptação Psicológica , Anisotropia , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Colina/metabolismo , Cognição , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/psicologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Glutationa/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Lactente , Recém-Nascido Prematuro , Inositol/metabolismo , Desenvolvimento da Linguagem , Espectroscopia de Ressonância Magnética , Masculino , Tamanho do Órgão , Estudos Prospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
11.
Biopreserv Biobank ; 14(2): 156-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886080

RESUMO

BACKGROUND: Biopsies extracted from brain cancer patients often display degraded ribosomal RNA, which makes them unusable in transcriptomic experiments. This has not been properly documented in previous works aimed at refining the molecular classification of brain cancer. OBJECTIVE: To determine RNA integrity in a large cohort of human brain cancer biopsies and to evaluate different factors that may influence RNA integrity in both a murine model of glioblastoma and in additional subsets of patient biopsies. METHODS: Total RNA was isolated from 255 biopsies of various human brain tumors (HBTs) and processed on a Bioanalyzer. Correct RNA integrity was considered for samples showing either the ribosomal 28S/18S peak ratio ≥ 1.2 or RNA integrity number ≥ 6. The time-dependent effect of ex vivo ischemia was evaluated in a murine model, whose results were tested in a new collection of 27 human biopsies. Multiple biopsy sampling was considered in a further set comprising 32 biopsies. RESULTS: The 255 human biopsies revealed a substantial percentage of samples displaying degraded RNA (27.5%). The murine model confirmed the known relevance of ex vivo ischemia time in increased RNA degradation. Human biopsies extracted immediately after cauterization showed a trend toward less RNA degradation. Combining snap freezing and multiple sampling of biopsies, the percentage of patients with degraded RNA was reduced by twofold (15.6%). CONCLUSIONS: We provide a first concise study of factors influencing RNA degradation in HBT biopsies. Immediate biopsy removal after cauterization of the tumor area, snap freezing, and multiple sampling improve RNA quality.


Assuntos
Neoplasias Encefálicas/genética , RNA Ribossômico/genética , Animais , Biópsia , Temperatura Corporal , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
12.
Neoplasia ; 17(8): 671-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26408259

RESUMO

Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of (13)C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.


Assuntos
Adaptação Fisiológica , Glucose/metabolismo , Glutamina/metabolismo , Microambiente Tumoral , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/farmacologia , Glutamina/farmacologia , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fosforilação Oxidativa/efeitos dos fármacos , Fosfolipídeos/metabolismo
13.
PLoS One ; 10(7): e0131310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208165

RESUMO

BACKGROUND: Intrauterine growth restriction (IUGR) is a risk factor for abnormal neurodevelopment. We studied a rabbit model of IUGR by magnetic resonance imaging (MRI) and spectroscopy (MRS), to assess in vivo brain structural and metabolic consequences, and identify potential metabolic biomarkers for clinical translation. METHODS: IUGR was induced in 3 pregnant rabbits at gestational day 25, by 40-50% uteroplacental vessel ligation in one horn; the contralateral horn was used as control. Fetuses were delivered at day 30 and weighted. A total of 6 controls and 5 IUGR pups underwent T2-w MRI and localized proton MRS within the first 8 hours of life, at 7T. Changes in brain tissue volumes and respective contributions to each MRS voxel were estimated by semi-automated registration of MRI images with a digital atlas of the rabbit brain. MRS data were used for: (i) absolute metabolite quantifications, using linear fitting; (ii) local temperature estimations, based on the water chemical shift; and (iii) classification, using spectral pattern analysis. RESULTS: Lower birth weight was associated with (i) smaller brain sizes, (ii) slightly lower brain temperatures, and (iii) differential metabolite profile changes in specific regions of the brain parenchyma. Specifically, we found estimated lower levels of aspartate and N-acetylaspartate (NAA) in the cerebral cortex and hippocampus (suggesting neuronal impairment), and higher glycine levels in the striatum (possible marker of brain injury). Our results also suggest that the metabolic changes in cortical regions are more prevalent than those detected in hippocampus and striatum. CONCLUSIONS: IUGR was associated with brain metabolic changes in vivo, which correlate well with the neurostructural changes and neurodevelopment problems described in IUGR. Metabolic parameters could constitute non invasive biomarkers for the diagnosis and abnormal neurodevelopment of perinatal origin.


Assuntos
Encéfalo/metabolismo , Retardo do Crescimento Fetal/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Peso ao Nascer , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Feminino , Retardo do Crescimento Fetal/diagnóstico , Idade Gestacional , Glicina/metabolismo , Hipocampo/metabolismo , Humanos , Modelos Animais , Parto , Gravidez , Coelhos , Natimorto/veterinária
15.
Am J Obstet Gynecol ; 213(2): 210.e1-210.e11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25891998

RESUMO

OBJECTIVE: We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. STUDY DESIGN: A total of 40 infants born small (birthweight <10th centile for gestational age) and 30 AGA infants underwent brain MRS at age 1 year on a 3-T scanner. Small-born infants were subclassified as late intrauterine growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. RESULTS: As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. CONCLUSION: Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment.


Assuntos
Adaptação Psicológica , Encéfalo/metabolismo , Desenvolvimento Infantil , Cognição , Retardo do Crescimento Fetal/metabolismo , Desenvolvimento da Linguagem , Destreza Motora , Habilidades Sociais , Nascimento a Termo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Pré-Escolar , Creatina/metabolismo , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/psicologia , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Humanos , Lactente , Recém-Nascido Pequeno para a Idade Gestacional , Inositol/metabolismo , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino
16.
Am J Obstet Gynecol ; 212(6): 804.e1-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25640049

RESUMO

OBJECTIVE: We sought to determine the relationship between fetal brain metabolism and microstructure expressed by brain sulcation, and corpus callosum (CC) development assessed by fetal brain magnetic resonance (MR) imaging and proton MR spectroscopy ((1)H-MRS). STUDY DESIGN: A total of 119 fetuses, 64 that were small for gestational age (estimated fetal weight <10th centile and normal umbilical artery Doppler) and 55 controls underwent a 3T MR imaging/(1)H-MRS exam at 37 weeks. Anatomical T2-weighted images were obtained in the 3 orthogonal planes and long echo time (TE) (1)H-MRS acquired from the frontal lobe. Head biometrics, cortical fissure depths (insula, Sylvian, parietooccipital, cingulate, and calcarine), and CC area and biometries were blindly performed by manual and semiautomated delineation using Analyze software and corrected creating ratios for biparietal diameter and frontooccipital diameter, respectively, for group comparison. Spectroscopic data were processed using LCModel software and analyzed as metabolic ratios of N-acetylaspartate (NAA) to choline (Cho), Cho to creatine (Cr), and myo-inositol (Ino) to Cho. Differences between cases and controls were assessed. To test for the association between metabolic ratios and microstructural parameters, bivariate correlation analyses were performed. RESULTS: Spectroscopic findings showed decreased NAA/Cho and increased Cho/Cr ratios in small fetuses. They also presented smaller head biometrics, shorter and smaller CC, and greater insular and cingulate depths. Frontal lobe NAA/Cho significantly correlated with biparietal diameter (r = 0.268; P = .021), head circumference (r = 0.259; P = .026), CC length (r = 0.265; P = .026), CC area (r = 0.317; P = .007), and the area of 6 from the 7 CC subdivisions. It did not correlate with any of the cortical sulcation parameters evaluated. None of the other metabolic ratios presented significant correlations with cortical development or CC parameters. CONCLUSION: Frontal lobe NAA/Cho levels-which are considered a surrogate marker of neuronal activity-show a strong association with CC development. These results suggest that both metabolic and callosal alterations may be part of the same process of impaired brain development associated with intrauterine growth restriction.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Retardo do Crescimento Fetal/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Encéfalo/embriologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/metabolismo , Feminino , Humanos , Gravidez , Estudos Prospectivos
17.
Fetal Diagn Ther ; 37(2): 108-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25115414

RESUMO

OBJECTIVES: We used magnetic resonance spectroscopy (MRS) to evaluate brain metabolic differences in small fetuses near term as compared to appropriate for gestational age (AGA) fetuses. STUDY DESIGN: 71 term small fetuses (estimated fetal weight <10th centile for gestational age with normal umbilical artery Doppler sonography) were subclassified as late intrauterine growth restriction (IUGR) (n = 50) or small for gestational age (SGA) (n = 21), and compared with 65 AGA fetuses. IUGR was defined by either abnormal middle cerebral artery, abnormal uterine artery Doppler sonography or estimated fetal weight <3rd centile. All participants underwent brain magnetic resonance imaging at 37 weeks of gestation, and single-voxel magnetic resonance spectra were obtained from the frontal lobe on a 3-tesla scanner. N-acetylaspartate (NAA)/choline (Cho), NAA/creatine (Cr) and Cho/Cr ratios were calculated and compared between cases and controls. The association of the metabolic ratios with the study groups was tested. RESULTS: After MRS processing and applying quality control criteria, 31 spectra from late-onset IUGR, 11 from SGA and 30 from AGA fetuses were selected for further analysis. Both SGA and late-onset IUGR fetuses showed significantly reduced NAA/Cho levels when compared to AGA fetuses. This decrease followed a linear trend across the three clinical groups that were considered. CONCLUSIONS: Both SGA and late-onset IUGR fetuses showed differences in MRS brain metabolic ratios. The findings suggest that despite near-normal perinatal outcomes, SGA fetuses are not constitutionally small and may represent a form of growth disorder that needs to be clarified.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/metabolismo , Recém-Nascido Pequeno para a Idade Gestacional/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Estudos de Coortes , Feminino , Seguimentos , Humanos , Recém-Nascido , Gravidez , Estudos Prospectivos , Adulto Jovem
18.
MAGMA ; 28(2): 119-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24916487

RESUMO

OBJECTIVE: We sought to evaluate the effects of acute hyperglycemia induced by intraperitoneal injection of glucose (2.7 g/kg) on vascular delivery to GL261 mouse gliomas kept at moderate hypothermia (~30 °C). MATERIALS AND METHODS: Seven GL261 glioma-bearing mice were studied by T1-weighted DCE MRI before and after an injection of glucose (n = 4) or saline (n = 3). Maximum relative contrast enhancement (RCE) and initial area under the enhancement curve (IAUC) were determined in each pixel. RESULTS: The mean tumor parameter values showed no significant changes after injecting either saline (RCE -5.9 ± 5.0 %; IAUC -3.7 ± 3.6 %) or glucose (RCE -1.6 ± 9.0 %; IAUC +0.6 ± 6.4 %). Pixel-by-pixel analysis revealed small post-injection changes in RCE and IAUC between the glucose and saline groups, all within 13 % range of their baseline values. CONCLUSION: Perturbing the metabolism of GL261 tumors kept at moderate hypothermia with hyperglycemia did not induce significant changes in the permeability/perfusion of these tumors. This is relevant for future studies with this model since regional differences in glucose accumulation could thus reflect basal heterogeneities in vasculature and/or metabolism of GL261 tumors.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Imagem de Difusão por Ressonância Magnética/métodos , Hiperglicemia/patologia , Hipotermia Induzida/métodos , Doença Aguda , Animais , Neoplasias Encefálicas/complicações , Linhagem Celular Tumoral , Feminino , Glioma , Hiperglicemia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga Tumoral
19.
BMC Bioinformatics ; 14: 316, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24180558

RESUMO

BACKGROUND: DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. RESULTS: Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. CONCLUSIONS: A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/.


Assuntos
Meios de Contraste/farmacocinética , Imageamento por Ressonância Magnética/métodos , Software , Algoritmos , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Simulação por Computador , Modelos Animais de Doenças , Análise dos Mínimos Quadrados , Camundongos
20.
PLoS One ; 7(10): e47824, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110107

RESUMO

BACKGROUND: Pattern Recognition techniques can provide invaluable insights in the field of neuro-oncology. This is because the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic format. Magnetic Resonance (MR), in the modalities of spectroscopy (MRS) and spectroscopic imaging (MRSI), has been widely applied to this purpose. The heterogeneity of the tissue in the brain volumes analyzed by MR remains a challenge in terms of pathological area delimitation. METHODOLOGY/PRINCIPAL FINDINGS: A pre-clinical study was carried out using seven brain tumor-bearing mice. Imaging and spectroscopy information was acquired from the brain tissue. A methodology is proposed to extract tissue type-specific sources from these signals by applying Convex Non-negative Matrix Factorization (Convex-NMF). Its suitability for the delimitation of pathological brain area from MRSI is experimentally confirmed by comparing the images obtained with its application to selected target regions, and to the gold standard of registered histopathology data. The former showed good accuracy for the solid tumor region (proliferation index (PI)>30%). The latter yielded (i) high sensitivity and specificity in most cases, (ii) acquisition conditions for safe thresholds in tumor and non-tumor regions (PI>30% for solid tumoral region; ≤5% for non-tumor), and (iii) fairly good results when borderline pixels were considered. CONCLUSIONS/SIGNIFICANCE: The unsupervised nature of Convex-NMF, which does not use prior information regarding the tumor area for its delimitation, places this approach one step ahead of classical label-requiring supervised methods for discrimination between tissue types, minimizing the negative effect of using mislabeled voxels. Convex-NMF also relaxes the non-negativity constraints on the observed data, which allows for a natural representation of the MRSI signal. This should help radiologists to accurately tackle one of the main sources of uncertainty in the clinical management of brain tumors, which is the difficulty of appropriately delimiting the pathological area.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Animais , Camundongos , Modelos Biológicos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA