Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(3): 284-291, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36411391

RESUMO

We report the engineering and selection of two synthetic proteins-FSR16m and FSR22-for the possible treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon. Despite selection by a spike protein from a now historical SARS-CoV-2 strain, FSR16m and FSR22 exhibit broad-spectrum neutralization of SARS-CoV-2 strains, inhibiting authentic B.1.351, B.1.617.2 and BA.1.1 viruses, with respective IC50 values of 3.4, 2.2 and 7.4 ng ml-1 for FSR16m. Cryo-EM structures revealed that these DARPins recognize a region of the receptor-binding domain (residues 456, 475, 486, 487 and 489) overlapping a critical portion of the angiotensin-converting enzyme 2 (ACE2)-binding surface. K18-hACE2 transgenic mice inoculated with B.1.617.2 and receiving intranasally administered FSR16m showed less weight loss and 10-100-fold lower viral burden in upper and lower respiratory tracts. The strong and broad neutralization potency makes FSR16m and FSR22 promising candidates for the prevention and treatment of infection by SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Proteínas de Repetição de Anquirina Projetadas , Camundongos Transgênicos
2.
Bioengineering (Basel) ; 9(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290479

RESUMO

Shiga toxin-producing E. coli (STEC) is a common cause of bloody diarrhea. The pathology of STEC infection derives from two exotoxins-Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2)-that are secreted by STEC in the gut, from where they are systemically absorbed, causing severe kidney damage leading to hemolytic uremic syndrome (HUS). Currently, there is no effective treatment for HUS, and only supportive care is recommended. We report the engineering of a panel of designed ankyrin repeat proteins (DARPin) with potent neutralization activity against Stx2a, the major subtype associated with HUS. The best dimeric DARPin, SD5, created via a combination of directed evolution and rational design, neutralizes Stx2a with a half maximal effective concentration (EC50) of 0.61 nM in vitro. The two monomeric DARPin constituents of SD5 exhibit complementary functions-SHT targets the enzymatic A subunit of Stx2a and inhibits the toxin's catalytic activity, while DARPin #3 binds the B subunit, based on the cryo-EM study, and induces a novel conformational change in the B subunit that distorts its five-fold symmetry and presumably interferes with toxin attachment to target cells. SD5 was fused to an albumin-binding DARPin, and the resulting trimeric DARPin DA1-SD5 efficiently protects mice in a toxin challenge model, pointing to a high potential of this DARPin as a therapeutic for STEC infection. Finally, the unprecedented toxin conformational change induced by DARPin #3 represents a novel mode of action for neutralizing Stx2 toxicity and reveals new targets for future drug development.

3.
bioRxiv ; 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35677079

RESUMO

We report the engineering and selection of two synthetic proteins - FSR16m and FSR22 - for possible treatment of SARS-CoV-2 infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon and exhibit broad spectrum neutralization of SARS-Cov-2 strains. The IC 50 values of FSR16m against authentic B.1.351, B.1.617.2 and BA.1.1 variants are 3.4 ng/mL, 2.2 ng/mL and 7.4 ng/mL, respectively, comparable to currently used therapeutic antibodies. Despite the use of the spike protein from a now historical wild-type virus for design, FSR16m and FSR22 both exhibit increased neutralization against newly-emerged variants of concern (39- to 296-fold) in pseudovirus assays. Cryo-EM structures revealed that these DARPins recognize a region of the receptor binding domain (RBD, residues 455-456, 486-489) overlapping a critical portion of the ACE2-binding surface. K18-hACE2 transgenic mice inoculated with a B.1.617.2 variant and receiving intranasally-administered FSR16m were protected as judged by less weight loss and 10-100-fold reductions in viral burden in the upper and lower respiratory tracts. The strong and broad neutralization potency make FSR16m and FSR22 promising candidates for prevention and treatment of infection by current and potential future strains of SARS-CoV-2.

5.
PLoS Biol ; 20(3): e3001589, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324891

RESUMO

Clostridioides difficile secretes Toxin B (TcdB) as one of its major virulence factors, which binds to intestinal epithelial and subepithelial receptors, including frizzled proteins and chondroitin sulfate proteoglycan 4 (CSPG4). Here, we present cryo-EM structures of full-length TcdB in complex with the CSPG4 domain 1 fragment (D1401-560) at cytosolic pH and the cysteine-rich domain of frizzled-2 (CRD2) at both cytosolic and acidic pHs. CSPG4 specifically binds to the autoprocessing and delivery domains of TcdB via networks of salt bridges, hydrophobic and aromatic/proline interactions, which are disrupted upon acidification eventually leading to CSPG4 drastically dissociating from TcdB. In contrast, FZD2 moderately dissociates from TcdB under acidic pH, most likely due to its partial unfolding. These results reveal structural dynamics of TcdB during its preentry step upon endosomal acidification, which provide a basis for developing therapeutics against C. difficile infections.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Domínios Proteicos , Fatores de Virulência/metabolismo
6.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34882774

RESUMO

Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Proteínas de Bactérias/genética , Proteínas de Repetição de Anquirina Projetadas , Enterotoxinas , Camundongos , Peptídeo Hidrolases
7.
J Biol Eng ; 13: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636701

RESUMO

BACKGROUND: The promise of biopharmaceuticals comprising one or more binding domains motivates the development of novel methods for de novo isolation and affinity maturation of virion-binding domains. Identifying avenues for overcoming the challenges associated with using virions as screening reagents is paramount given the difficulties associated with obtaining high-purity virus-associated proteins that retain the conformation exhibited on the virion surface. RESULTS: Fluorescence activated cell sorting (FACS) of 1.5 × 107 clones taken from a naïve yeast surface-displayed human fibronectin domain (Fn3) against whole virions yielded two unique binders to Zika virions. Construction and FACS of site-directed binding loop mutant libraries based on one of these binders yielded multiple progeny clones with enhanced Zika-binding affinities. These affinity-matured clones bound Zika virions with low double- or single-digit nanomolar affinity in ELISA assays, and expressed well as soluble proteins in E. coli shake flask culture, with post-purification yields exceeding 10 mg/L. CONCLUSIONS: FACS of a yeast-displayed binding domain library is an efficient method for de novo isolation of virion-binding domains. Affinities of isolated virion-binding clones are readily enhanced via FACS screening of mutant progeny libraries. Given that most binding domains are compatible with yeast display, the approach taken in this work may be broadly utilized for generating virion-binding domains against many different viruses for use in passive immunotherapy and the prevention of viral infection.

9.
mSphere ; 4(5)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578248

RESUMO

Clostridium difficile infection (CDI) is a leading cause of hospital-acquired diarrhea. In recent decades, the emergence of the "hypervirulent" BI/NAP1/027 strains of C. difficile significantly increased the morbidity and mortality of CDI. The pathogenesis of CDI is primarily mediated by the action of two toxins, TcdA and TcdB, with TcdB being the major virulent factor in humans. In this report, we describe the engineering of a panel of designed ankyrin repeat proteins (DARPins) that potently neutralize TcdB from the BI/NAP1/027 strains (e.g., TcdBUK1). The most effective DARPin, D16, inhibits TcdBUK1 with a 50% effective concentration (EC50) of 0.5 nM, which is >66-fold lower than that of the FDA-approved anti-TcdB antibody bezlotoxumab (EC50, ∼33 nM). Competitive enzyme-linked immunosorbent assays (ELISAs) showed that D16 blocks interactions between TcdB and its receptor, chondroitin sulfate proteoglycan 4 (CSPG4). The dimeric DARPin U3D16, which pairs D16 with DARPin U3, a disrupter of the interaction of TcdB with Frizzled 1/2/7 receptor, exhibits 10-fold-to-20-fold-enhanced neutralization potency against TcdB from C. difficile strains VPI 10463 (laboratory strain) and M68 (CF/NAP9/017) but identical activity against TcdBUK1 relative to D16. Subsequent ELISAs revealed that TcdBUK1 did not significantly interact with Frizzled 1/2/7. Computation modeling revealed 4 key differences at the Frizzled 1/2/7 binding interface which are likely responsible for the significantly reduced binding affinity.IMPORTANCE We report the engineering and characterization of designed ankyrin proteins as potent neutralizers of TcdB toxin secreted by a hypervirulent ribotype 027 strain of Clostridium difficile We further show that although TcdB toxins from both ribotype 027 and VPI 10461 interact efficiently with TcdB receptors CSPG4 and Pvrl3, TcdB027 lacks significant ability to bind the only known physiologically relevant TcdB receptor, Frizzled 1/2/7.


Assuntos
Repetição de Anquirina , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Clostridioides difficile/classificação , Engenharia de Proteínas , Animais , Células CACO-2 , Chlorocebus aethiops , Humanos , Ribotipagem , Células Vero
10.
PLoS Biol ; 17(6): e3000311, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233493

RESUMO

Clostridium difficile infection (CDI) is a major nosocomial disease associated with significant morbidity and mortality. The pathology of CDI stems primarily from the 2 C. difficile-secreted exotoxins-toxin A (TcdA) and toxin B (TcdB)-that disrupt the tight junctions between epithelial cells leading to the loss of colonic epithelial barrier function. Here, we report the engineering of a series of monomeric and dimeric designed ankyrin repeat proteins (DARPins) for the neutralization of TcdB. The best dimeric DARPin, DLD-4, inhibited TcdB with a half maximal effective concentration (EC50) of 4 pM in vitro, representing an approximately 330-fold higher potency than the Food and Drug Administration (FDA)-approved anti-TcdB monoclonal antibody bezlotoxumab in the same assay. DLD-4 also protected mice from a toxin challenge in vivo. Cryo-electron microscopy (cryo-EM) studies revealed that the 2 constituent DARPins of DLD-4-1.4E and U3-bind the central and C-terminal regions of the delivery domain of TcdB. Competitive enzyme-linked immunosorbent assay (ELISA) studies showed that the DARPins 1.4E and U3 interfere with the interaction between TcdB and its receptors chondroitin sulfate proteoglycan 4 (CSPG4) and frizzled class receptor 2 (FZD2), respectively. Our cryo-EM studies revealed a new conformation of TcdB (both apo- and DARPin-bound at pH 7.4) in which the combined repetitive oligopeptides (CROPS) domain points away from the delivery domain. This conformation of the CROPS domain is in stark contrast to that seen in the negative-stain electron microscopy (EM) structure of TcdA and TcdB at the same pH, in which the CROPS domain bends toward and "kisses" the delivery domain. The ultrapotent anti-TcdB molecules from this study serve as candidate starting points for CDI drug development and provide new biological tools for studying the pathogenicity of C. difficile. The structural insights regarding both the "native" conformation of TcdB and the putative sites of TcdB interaction with the FZD2 receptor, in particular, should help accelerate the development of next-generation anti-C. difficile toxin therapeutics.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/antagonistas & inibidores , Infecções por Clostridium/metabolismo , Animais , Repetição de Anquirina/genética , Anticorpos Monoclonais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Anticorpos Amplamente Neutralizantes , Células CACO-2 , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Microscopia Crioeletrônica , Enterotoxinas/metabolismo , Humanos , Camundongos , Engenharia de Proteínas/métodos
11.
Protein Cell ; 9(1): 3-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28271446

RESUMO

Antibodies have proved to be a valuable mode of therapy for numerous diseases, mainly owing to their high target binding affinity and specificity. Unfortunately, antibodies are also limited in several respects, chief amongst those being the extremely high cost of manufacture. Therefore, non-antibody binding proteins have long been sought after as alternative therapies. New binding protein scaffolds are constantly being designed or discovered with some already approved for human use by the FDA. This review focuses on protein scaffolds that are either already being used in humans or are currently being evaluated in clinical trials. Although not all are expected to be approved, the significant benefits ensure that these molecules will continue to be investigated and developed as therapeutic alternatives to antibodies. Based on the location of the amino acids that mediate ligand binding, we place all the protein scaffolds under clinical development into two general categories: scaffolds with ligand-binding residues located in exposed flexible loops, and those with the binding residues located in protein secondary structures, such as α-helices. Scaffolds that fall under the first category include adnectins, anticalins, avimers, Fynomers, Kunitz domains, and knottins, while those belonging to the second category include affibodies, ß-hairpin mimetics, and designed ankyrin repeat proteins (DARPins). Most of these scaffolds are thermostable and can be easily produced in microorganisms or completely synthesized chemically. In addition, many of these scaffolds derive from human proteins and thus possess very low immunogenic potential. Additional advantages and limitations of these protein scaffolds as therapeutics compared to antibodies will be discussed.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Recombinantes/uso terapêutico , Aminoácidos/metabolismo , Animais , Anticorpos/uso terapêutico , Humanos , Ligantes , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
12.
ACS Chem Biol ; 8(12): 2678-87, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24047285

RESUMO

We describe a new cell-penetrating protein, B1, capable of delivering conjugated proteins and nucleic acids into mammalian cells. B1 is a 244-amino-acid product of a single-base frameshift in the gene encoding enhanced green fluorescent protein (eGFP). The molecule has a net positive charge of 43 and a very high charge-to-mass ratio of 1.5. eGFP-fused B1 potently penetrates both adherent and suspension cells with >80% of cells taking up the protein when exposed to concentrations as low as 1 µM. The protein was found to cluster in the paranuclear region of TZM-bl cells. Most importantly, we show that B1 not only facilitates cellular uptake but allows biomolecular cargo to reach sites of biological relevance. For example, baby hamster kidney cells underwent DNA recombination when exposed to B1-tagged Cre recombinase at protein concentrations as low as 2.5 µM, indicating potent nuclear delivery of functional protein cargos. Additionally, B1 delivers noncovalently conjugated RNA and DNA across the cell membrane to cytosolic and nuclear sites accessible to the cellular translation and transcription machinery, as gauged by detection of encoded reporter functions, with efficiency comparable to commercially available cationic lipid reagents. B1 appears to utilize cell-surface glycans and multiple competing endocytic pathways to enter and traffic through cells. These studies provide both a new tool for intracellular delivery of biomolecules and insights that could aid in the design of more effective cell penetrating proteins.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Cricetinae , Citosol/metabolismo , Mutação da Fase de Leitura , Genes Reporter , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Integrases/genética , Dados de Sequência Molecular , Biossíntese de Proteínas , Recombinação Genética , Eletricidade Estática , Transcrição Gênica , Transgenes
13.
Antimicrob Agents Chemother ; 57(6): 2571-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529728

RESUMO

Despite recent progress in the development of direct-acting antiviral agents against hepatitis C virus (HCV), more effective therapies are still urgently needed. We and others previously identified three phenothiazine compounds as potent HCV entry inhibitors. In this study, we show that phenothiazines inhibit HCV entry at the step of virus-host cell fusion, by intercalating into cholesterol-rich domains of the target membrane and increasing membrane fluidity. Perturbation of the alignment/packing of cholesterol in lipid membranes likely increases the energy barrier needed for virus-host fusion. A screening assay based on the ability of molecules to selectively increase the fluidity of cholesterol-rich membranes was subsequently developed. One compound that emerged from the library screen, topotecan, is able to very potently inhibit the fusion of liposomes with cell culture-derived HCV (HCVcc). These results yield new insights into HCV infection and provide a platform for the identification of new HCV inhibitors.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Fenotiazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/química , Colesterol , Células HEK293 , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos
14.
PLoS One ; 8(12): e84022, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391867

RESUMO

Genetic suppressor elements (GSEs) are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV) infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection. A 244 amino acid gene fragment, B1, was strongly enriched after 5 rounds of selection. B1 derives from a single-base frameshift of the enhanced green fluorescent protein (eGFP) which was used as a filler during fragment cloning. B1 has a very high net positive charge of 43 at neutral pH and a high charge-to-mass (kDa) ratio of 1.5. We show that B1 expression specifically inhibits HCV replication. In addition, five highly positively charged B1 fragments produced from progressive truncation at the C-terminus all retain the ability to inhibit HCV, suggesting that a high positive charge, rather than a particular motif in B1, likely accounts for B1's anti-HCV activity. Another supercharged protein, +36GFP, was also found to strongly inhibit HCV replication when added to cells at the time of infection. This study reports a new methodology for HCV inhibitor screening and points to the anti-HCV potential of positively charged proteins/peptides.


Assuntos
Antivirais/farmacologia , Proteínas de Fluorescência Verde/farmacologia , Hepacivirus/patogenicidade , Hepatite C/prevenção & controle , Supressão Genética/fisiologia , Replicação Viral , Sequência de Aminoácidos , Morte Celular , Mutação da Fase de Leitura/genética , Proteínas de Fluorescência Verde/genética , Hepacivirus/genética , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , Dados de Sequência Molecular , Biblioteca de Peptídeos
15.
Antimicrob Agents Chemother ; 56(2): 672-81, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083468

RESUMO

We describe a virucidal small molecule, PD 404,182, that is effective against hepatitis C virus (HCV) and human immunodeficiency virus (HIV). The median 50% inhibitory concentrations (IC(50)s) for the antiviral effect of PD 404,182 against HCV and HIV in cell culture are 11 and 1 µM, respectively. The antiviral activity of PD 404,182 is due to the physical disruption of virions that is accompanied to various degrees (depending on the virus and exposure temperature/time) by the release of viral nucleic acids into the surrounding medium. PD 404,182 does not directly lyse liposomal membranes even after extended exposure, and it shows no attenuation in antiviral activity when preincubated with liposomes of various lipid compositions, suggesting that the compound inactivates viruses through interaction with a nonlipid structural component of the virus. The virucidal activity of PD 404,182 appears to be virus specific, as little to no viral inactivation was detected with the enveloped Dengue and Sindbis viruses. PD 404,182 effectively inactivates a broad range of primary isolates of HIV-1 as well as HIV-2 and simian immunodeficiency virus (SIV), and it does not exhibit significant cytotoxicity with multiple human cell lines in vitro (50% cytotoxic concentration, >300 µM). The compound is fully active in cervical fluids, although it exhibits decreased potency in the presence of human serum, retains its full antiviral potency for 8 h when in contact with cells, and is effective against both cell-free and cell-associated HIV. These qualities make PD 404,182 an attractive candidate anti-HIV microbicide for the prevention of HIV transmission through sexual intercourse.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , HIV-2/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , HIV-1/fisiologia , HIV-2/fisiologia , Hepacivirus/fisiologia , Humanos , Concentração Inibidora 50 , Fígado/citologia , Fígado/virologia , Testes de Sensibilidade Microbiana , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
16.
Antiviral Res ; 86(2): 220-3, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20188762

RESUMO

The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A. N4mBid exhibited a 10-20-fold difference in cell viability between the HCV-infected and mock-infected states, while the parental Huh-7.5 cells showed <2-fold difference under the same conditions. The pronounced difference in n4mBid cell viability between the HCV- and mock-infected states in a 96-well plate format points to its usefulness in cell survival-based high-throughput screens for anti-HCV molecules. The degree of cell death was found to be proportional to the intracellular load of HCV. HCV-low n4mBid cells, expressing an anti-HCV short hairpin RNA, showed a significant growth advantage over naïve cells and could be rapidly enriched after HCV infection, suggesting the possibility of using n4mBid cells for the cell survival-based selection of genetic anti-HCV factors.


Assuntos
Morte Celular , Hepacivirus/patogenicidade , Virologia/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/virologia , Humanos
17.
Proc Natl Acad Sci U S A ; 107(8): 3764-9, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20142494

RESUMO

The hepatitis C virus (HCV) life cycle involves multiple steps, but most current drug candidates target only viral replication. The inability to systematically discover inhibitors targeting multiple steps of the HCV life cycle has hampered antiviral development. We present a simple screen for HCV antivirals based on the alleviation of HCV-mediated cytopathic effect in an engineered cell line-n4mBid. This approach obviates the need for a secondary screen to avoid cytotoxic false-positive hits. Application of our screen to 1280 compounds, many in clinical trials or approved for therapeutic use, yielded >200 hits. Of the 55 leading hits, 47 inhibited one or more aspects of the HCV life cycle by >40%. Six compounds blocked HCV entry to levels similar to an antibody (JS-81) targeting the HCV entry receptor CD81. Seven hits inhibited HCV replication and/or infectious virus production by >100-fold, with one (quinidine) inhibiting infectious virus production by 450-fold relative to HCV replication levels. This approach is simple and inexpensive and should enable the rapid discovery of new classes of HCV life cycle inhibitors.


Assuntos
Antivirais/isolamento & purificação , Citoproteção , Hepacivirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Bioensaio , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA