Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(12): 16356-63, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193608

RESUMO

Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative to the silver film surface.

2.
Opt Express ; 23(26): 33466-71, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26832011

RESUMO

Scanning second harmonic generation microscopy has been used to investigate crystallographic orientation of the grain structure in Al wire bonds in insulated gate bipolar transistor modules. It was shown that the recorded second harmonic microscopy images revealed the grain structure of the Al sample. Additional information of the individual grain orientation was achieved by using simple interpretations of the recorded rotational anisotropy.

3.
Phys Chem Chem Phys ; 13(42): 18971-5, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21804963

RESUMO

We make use of an inhomogeneous electrostatic dipole field to impart a quantum-state-dependent deflection to a pulsed beam of OCS molecules, and show that those molecules residing in the absolute ground state, X(1)Σ(+), |00(0)0>, J = 0, can be separated out by selecting the most deflected part of the molecular beam. Past the deflector, we irradiate the molecular beam by a linearly polarized pulsed nonresonant laser beam that impulsively aligns the OCS molecules. Their alignment, monitored via velocity-map imaging, is measured as a function of time, and the time dependence of the alignment is used to determine the quantum state composition of the beam. We find significant enhancements of the alignment ( = 0.84) and of state purity (>92%) for a state-selected, deflected beam compared with an undeflected beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA