Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(2): 573-581, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36132685

RESUMO

Antimicrobial resistance (AMR) continues to threaten the effective treatment and prevention of bacterial infections. The spread of resistant infections is accelerated by the lack of fast and cost-effective tests for the detection of AMR at the point-of-care. We aimed to address this challenge by developing a diagnostic tool to detect one of the major forms of AMR, the ß-lactamase enzymes. Antibiotic-functionalized gold nanoparticles (AuNPs) have been successfully developed for the detection of ß-lactamases in challenging biological media, namely undiluted urine. Furthermore, these tools are compatible with samples containing a urine sample preservative (boric acid) or hematuria (blood). The functionalized AuNPs interact with the active ß-lactamases, resulting in the hydrolysis of the surface-bound antibiotics, which then inhibits binding of the AuNPs to a capture protein (a penicillin-binding protein) to indicate the presence of active ß-lactamases. We successfully integrated the antibiotic-functionalized AuNPs into a new lateral flow assay (LFA), which can be used to detect active ß-lactamases down to the detection limit of 11 nM. While we demonstrate the use of antibiotic-functionalized AuNPs in an LFA format to provide a novel method of detecting active ß-lactamases, these functionalized AuNPs are amenable to a range of alternative diagnostic technologies and could lead to vital point-of-care diagnostics for the early detection of multi-drug resistant infections.

2.
Antibiotics (Basel) ; 9(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003560

RESUMO

The misuse of antibiotics in health care has led to increasing levels of drug resistant infections (DRI's) occurring in the general population. Most technologies developed for the detection of DRI's typically focus on phenotyping or genotyping bacterial resistance rather than on the underlying cause and spread of DRI's; namely the misuse of antibiotics. An aptameric based assay has been developed for the monitoring of ampicillin in urine samples, for use in determining optimal antibiotic dosage and monitoring patient compliance with treatment. The fluorescently labelled aptamers were shown to perform optimally at pH 7, ideal for buffered clinical urine samples, with limits of detection as low as 20.6 nM, allowing for determination of ampicillin in urine in the clinically relevant range of concentrations (100 nM to 100 µM). As the assay requires incubation for only 1 h with a small sample volume, 50 to 150 µL, the test would fit within current healthcare pathways, simplifying the adoption of the technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA