Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13495, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188110

RESUMO

Wheat is an economically, socially, and nutritionally important crop, however, aphid infestation can often reduce wheat yield through feeding and virus transmission. Through field phenotyping, we investigated aphid resistance in ancestral wheat Triticum monococcum (L.). Aphid (Rhopalosiphum padi (L.), Sitobion avenae (F.) and Metopolophium dirhodum (Wlk.)) populations and natural enemy presence (parasitised mummified aphids, ladybird adults and larvae and lacewing eggs and larvae) on two naturally susceptible wheat varieties, Triticum aestivum (L.) var. Solstice and T. monococcum MDR037, and three potentially resistant genotypes T. monococcum MDR657, MDR045 and MDR049 were monitored across three years of field trials. Triticum monococcum MDR045 and MDR049 had smaller aphid populations, whereas MDR657 showed no resistance. Overall, natural enemy presence was positively correlated with aphid populations; however, MDR049 had similar natural enemy presence to MDR037 which is susceptible to aphid infestation. It is hypothesised that alongside reducing aphid population growth, MDR049 also confers indirect resistance by attracting natural enemies. The observed resistance to aphids in MDR045 and MDR049 has strong potential for introgression into commercial wheat varieties, which could have an important role in Integrated Pest Management strategies to reduce aphid populations and virus transmission.


Assuntos
Afídeos/crescimento & desenvolvimento , Resistência à Doença/fisiologia , Doenças das Plantas/parasitologia , Triticum , Animais , Triticum/crescimento & desenvolvimento , Triticum/parasitologia
2.
Sci Rep ; 7: 46497, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406246

RESUMO

Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety.


Assuntos
Afídeos , Micorrizas/metabolismo , Floema , Doenças das Plantas/parasitologia , Animais , Floema/metabolismo , Floema/parasitologia , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA