Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Signal ; 17(857): eads1228, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378287

RESUMO

Developmental axon pruning is controlled by a careful balance of pro- and anti-apoptotic signals, which are activated in response to external cues to sculpt mature neuronal circuitry. In this issue of Science Signaling, Abraham et al. define a safeguard against apoptotic axon pruning and illustrate that Siah3 represses Parkin-mediated mitophagy to control the availability of axonal mitochondria that activate the pruning process.


Assuntos
Axônios , Mitocôndrias , Mitofagia , Ubiquitina-Proteína Ligases , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Axônios/metabolismo , Axônios/fisiologia , Animais , Mitocôndrias/metabolismo , Humanos , Apoptose , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
Cell Rep ; 43(2): 113721, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310514

RESUMO

Inflammation is closely associated with many neurodegenerative disorders. Yet, whether inflammation causes, exacerbates, or responds to neurodegeneration has been challenging to define because the two processes are so closely linked. Here, we disentangle inflammation from the axon damage it causes by individually blocking cytotoxic T cell function and axon degeneration. We model inflammatory damage in mouse skin, a barrier tissue that, despite frequent inflammation, must maintain proper functioning of a dense array of axon terminals. We show that sympathetic axons modulate skin inflammation through release of norepinephrine, which suppresses activation of γδ T cells via the ß2 adrenergic receptor. Strong inflammatory stimulation-modeled by application of the Toll-like receptor 7 agonist imiquimod-causes progressive γδ T cell-mediated, Sarm1-dependent loss of these immunosuppressive sympathetic axons. This removes a physiological brake on T cells, initiating a positive feedback loop of enhanced inflammation and further axon damage.


Assuntos
Dermatite , Inflamação , Animais , Camundongos , Retroalimentação , Axônios , Terminações Pré-Sinápticas
3.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091013

RESUMO

Metabolic plasticity of neurons ensures their activity continues when glucose is limited. Walsh and Simon discuss new work by Ashrafi and colleagues (https://doi.org/10.1083/jcb.202305048) that finds Sirtuin 3 directs local metabolic adaptation at synapses during sustained glucose deprivation.


Assuntos
Sirtuína 3 , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Glucose/metabolismo , Mitocôndrias
4.
J Phys Chem B ; 127(50): 10861-10870, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38064590

RESUMO

Temperature fields provide a noninvasive approach for manipulating individual macromolecules in solution. Utilizing thermophoresis and other secondary effects resulting from the inhomogeneous distribution of crowding agents, one may gain valuable insights into the interactions of molecular mixtures. In this report, we examine the steady-state concentration distribution and dynamics of DNA molecules in a poly(ethylene glycol) (PEG)/water solution when exposed to localized temperature gradients generated by optical heating of a thin chrome layer at a liquid-solid boundary. This allowed us to experimentally investigate the interplay between DNA thermophoresis and PEG-induced entropic depletion effects. Our quantitative analysis demonstrates that the depletion effects dominate over DNA thermophoresis, causing the DNA polymers to migrate toward the heat source. Additionally, we explore the transient stretching of individual DNA molecules in thermally induced PEG gradients and estimate the contributing forces.


Assuntos
DNA , Polietilenoglicóis , Temperatura , Polímeros , Entropia
5.
Cell ; 185(18): 3284-3286, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055196

RESUMO

Nearly all neurons contain a primary cilium, but little is known about how this compartment contributes to neuromodulatory signaling. In a new study, Sheu et al. use cutting-edge electron microscopy and fluorescence imaging techniques to reveal a new type of synapse that enables chemical transmission between serotonergic axons and the primary cilia of hippocampal neurons.


Assuntos
Cílios , Neurônios/fisiologia , Sinapses , Hipocampo/citologia , Microscopia Eletrônica
6.
Dev Cell ; 56(13): 1900-1916.e5, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34197726

RESUMO

Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.


Assuntos
Caspase 3/genética , Caspase 9/genética , Fosfatases de Especificidade Dupla/genética , Regeneração/genética , Proteína Wnt3/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Cicatrização/genética
7.
Dev Cell ; 56(7): 976-984.e3, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33823136

RESUMO

Axon remodeling through sprouting and pruning contributes to the refinement of developing neural circuits. A prominent example is the pruning of developing sensory axons deprived of neurotrophic support, which is mediated by a caspase-dependent (apoptotic) degeneration process. Distal sensory axons possess a latent apoptotic pathway, but a cell body-derived signal that travels anterogradely down the axon is required for pathway activation. The signaling mechanisms that underlie this anterograde process are poorly understood. Here, we show that the tumor suppressor P53 is required for anterograde signaling. Interestingly loss of P53 blocks axonal but not somatic (i.e., cell body) caspase activation. Unexpectedly, P53 does not appear to have an acute transcriptional role in this process and instead appears to act in the cytoplasm to directly activate the mitochondrial apoptotic pathway in axons. Our data support the operation of a cytoplasmic role for P53 in the anterograde death of developing sensory axons.


Assuntos
Axônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Axônios/enzimologia , Axônios/metabolismo , Caspases/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Camundongos , Domínios Proteicos , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína bcl-X/antagonistas & inibidores
9.
PLoS One ; 16(3): e0247943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684164

RESUMO

BACKGROUND: Gender and health are two factors that shape the quality of life in old age. Previous available literature established an associaton between various demographic and socio-economic factors with the health and well-being of older adults in India; however, the influence of childless aged is neglected. Therefore, the study examined the gender differential in psychological health and subjective well-being among older adults, focusing on childless older adults. METHODOLOGY: This study utilized data from Building a Knowledge Base on Population Aging in India (BKPAI). Psychological health and subjective well-being were examined for 9541 older adults aged 60 years & above. Descriptive statistics and bivariate analysis were used to find the preliminary results. Further, multivariate analysis has been done to fulfill the objective of the study. RESULTS: Around one-fifth (21.2%) of the men reported low psychological health, whereas around one-fourth (25.5%) of the women reported low psychological health. Further, around 24 per cent of men and 29 per cent of women reported low subjective well-being. Results found that low psychological well-being (OR = 1.87, C.I. = 1.16-3.01), as well as low subjective well-being (OR = 1.78, C.I. = 1.15-2.76), was higher in childless older women than in childless older men. Higher education, community involvement, good self-rated health, richest wealth quintile, and residing in urban areas significantly decrease the odds of low subjective well-being and low psychological well-being among older adults. CONCLUSION: There is a need to improve older adults' psychological health and subjective well-being through expanded welfare provisions, especially for childless older adults. Moreover, there is an immediate requirement to cater to the needs of poor and uneducated older adults.


Assuntos
Atividades Cotidianas , Saúde Mental , Qualidade de Vida , Caracteres Sexuais , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade
10.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482083

RESUMO

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Assuntos
Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Degeneração Neural/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Morte Celular , Células Cultivadas , Córtex Cerebral/patologia , Cromatina/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Drosophila , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estabilidade Proteica , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
11.
J Neurosci ; 40(28): 5402-5412, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471877

RESUMO

Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.


Assuntos
Axônios/metabolismo , Caspases/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Orientação de Axônios/fisiologia , Camundongos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/fisiologia , Tratos Piramidais/metabolismo
12.
Neuron ; 103(3): 412-422.e4, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31221560

RESUMO

Selective synaptic and axonal degeneration are critical aspects of both brain development and neurodegenerative disease. Inhibition of caspase signaling in neurons is a potential therapeutic strategy for neurodegenerative disease, but no neuron-specific modulators of caspase signaling have been described. Using a mass spectrometry approach, we discovered that RUFY3, a neuronally enriched protein, is essential for caspase-mediated degeneration of TRKA+ sensory axons in vitro and in vivo. Deletion of Rufy3 protects axons from degeneration, even in the presence of activated CASP3 that is competent to cleave endogenous substrates. Dephosphorylation of RUFY3 at residue S34 appears required for axon degeneration, providing a potential mechanism for neurons to locally control caspase-driven degeneration. Neuronally enriched RUFY3 thus provides an entry point for understanding non-apoptotic functions of CASP3 and a potential target to modulate caspase signaling specifically in neurons for neurodegenerative disease.


Assuntos
Axônios/patologia , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Axônios/enzimologia , Caspase 3/fisiologia , Células Cultivadas , Proteínas do Citoesqueleto , Ativação Enzimática , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Camundongos , Camundongos Knockout , Degeneração Neural/enzimologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Fosforilação , Processamento de Proteína Pós-Traducional , Receptor trkA/fisiologia , Células Receptoras Sensoriais/fisiologia , Relação Estrutura-Atividade
13.
Elife ; 82019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042147

RESUMO

Axon degeneration sculpts neuronal connectivity patterns during development and is an early hallmark of several adult-onset neurodegenerative disorders. Substantial progress has been made in identifying effector mechanisms driving axon fragmentation, but less is known about the upstream signaling pathways that initiate this process. Here, we investigate the behavior of the actin-spectrin-based Membrane-associated Periodic Skeleton (MPS), and effects of actin and spectrin manipulations in sensory axon degeneration. We show that trophic deprivation (TD) of mouse sensory neurons causes a rapid disassembly of the axonal MPS, which occurs prior to protein loss and independently of caspase activation. Actin destabilization initiates TD-related retrograde signaling needed for degeneration; actin stabilization prevents MPS disassembly and retrograde signaling during TD. Depletion of ßII-spectrin, a key component of the MPS, suppresses retrograde signaling and protects axons against degeneration. These data demonstrate structural plasticity of the MPS and suggest its potential role in early steps of axon degeneration.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Degeneração Neural , Células Receptoras Sensoriais/metabolismo , Espectrina/metabolismo , Animais , Células Cultivadas , Camundongos , Células Receptoras Sensoriais/patologia , Transdução de Sinais
14.
Cell ; 175(7): 1811-1826.e21, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30503207

RESUMO

Nervous system function depends on proper myelination for insulation and critical trophic support for axons. Myelination is tightly regulated spatially and temporally, but how it is controlled molecularly remains largely unknown. Here, we identified key molecular mechanisms governing the regional and temporal specificity of CNS myelination. We show that transcription factor EB (TFEB) is highly expressed by differentiating oligodendrocytes and that its loss causes precocious and ectopic myelination in many parts of the murine brain. TFEB functions cell-autonomously through PUMA induction and Bax-Bak activation to promote programmed cell death of a subset of premyelinating oligodendrocytes, allowing selective elimination of oligodendrocytes in normally unmyelinated brain regions. This pathway is conserved across diverse brain areas and is critical for myelination timing. Our findings define an oligodendrocyte-intrinsic mechanism underlying the spatiotemporal specificity of CNS myelination, shedding light on how myelinating glia sculpt the nervous system during development.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Encéfalo/citologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/genética , Neuroglia/citologia , Oligodendroglia/citologia , Proteínas Supressoras de Tumor/genética
15.
Curr Opin Neurol ; 31(6): 693-701, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30320612

RESUMO

PURPOSE OF REVIEW: The current review analyzes recent findings that suggest that axon degeneration is a druggable process in the treatment of neurodegenerative disorders and a subset of traumas. RECENT FINDINGS: Emerging evidence reveals that axon degeneration is an active and regulated process in the early progression of some neurodegenerative diseases and acute traumas, which is orchestrated through a combination of axon-intrinsic and somatically derived signaling events. The identification of these pathways has presented appealing drug targets whose specificity for the nervous system and phenotypes in mouse models offers significant clinical opportunity. SUMMARY: As the biology of axon degeneration becomes clear, so too has the realization that the pathways driving axon degeneration overlap in part with those that drive neuronal apoptosis and, importantly, axon regeneration. Axon-specific disorders like those seen in CIPN, where injury signaling to the nucleus is not a prominent feature, have been shown to benefit from disruption of Sarm1. In injury and disease contexts, where involvement of somatic events is prominent, inhibition of the MAP Kinase DLK exhibits promise for neuroprotection. Here, however, interfering with somatic signaling may preclude the ability of an axon or a circuit to regenerate or functionally adapt following acute injuries.


Assuntos
Axônios/patologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Humanos , Regeneração Nervosa , Transdução de Sinais
16.
Elife ; 62017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28477407

RESUMO

Shank is a post-synaptic scaffolding protein that has many binding partners. Shank mutations and copy number variations (CNVs) are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. It is not known which Shank binding partners are responsible for these defects. Here we show that the C. elegans SHN-1/Shank binds L-type calcium channels and that increased and decreased shn-1 gene dosage alter L-channel current and activity-induced expression of a CRH-1/CREB transcriptional target (gem-4 Copine), which parallels the effects of human Shank copy number variations (CNVs) on Autism spectrum disorders and schizophrenia. These results suggest that an important function of Shank proteins is to regulate L-channel current and activity induced gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans , Músculos/fisiologia
17.
Proc Natl Acad Sci U S A ; 113(21): 6029-34, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162329

RESUMO

Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Dendritos/metabolismo , Espectrina/metabolismo , Actinas/genética , Animais , Caenorhabditis elegans , Linhagem Celular , Membrana Celular/genética , Galinhas , Citoesqueleto/genética , Dendritos/genética , Drosophila melanogaster , Camundongos , Especificidade da Espécie , Espectrina/genética
18.
Cell ; 164(5): 1031-45, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26898330

RESUMO

During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.


Assuntos
Axônios/patologia , Neurônios/patologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Apoptose , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Camundongos , Dados de Sequência Molecular , Degeneração Neural/patologia , Neurônios/metabolismo , Proteínas/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteína bcl-X/metabolismo
19.
Cell ; 160(1-2): 161-76, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594179

RESUMO

Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate mitogen-activated protein kinase (MAPK) families and delineate a MAPK cascade that represents the early degenerative response to axonal injury. The adaptor protein Sarm1 is required for activation of this MAPK cascade, and this Sarm1-MAPK pathway disrupts axonal energy homeostasis, leading to ATP depletion before physical breakdown of damaged axons. The protective cytoNmnat1/Wld(s) protein inhibits activation of this MAPK cascade. Further, MKK4, a key component in the Sarm1-MAPK pathway, is antagonized by AKT signaling, which modulates the degenerative response by limiting activation of downstream JNK signaling. Our results reveal a regulatory mechanism that integrates distinct signals to instruct pathological axon degeneration.


Assuntos
Axônios/patologia , Sistema de Sinalização das MAP Quinases , Trifosfato de Adenosina/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Morte Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
20.
Cell ; 159(4): 896-910, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417164

RESUMO

The visualization of molecularly labeled structures within large intact tissues in three dimensions is an area of intense focus. We describe a simple, rapid, and inexpensive method, iDISCO, that permits whole-mount immunolabeling with volume imaging of large cleared samples ranging from perinatal mouse embryos to adult organs, such as brains or kidneys. iDISCO is modeled on classical histology techniques, facilitating translation of section staining assays to intact tissues, as evidenced by compatibility with 28 antibodies to both endogenous antigens and transgenic reporters like GFP. When applied to degenerating neurons, iDISCO revealed unexpected variability in number of apoptotic neurons within individual sensory ganglia despite tight control of total number in all ganglia. It also permitted imaging of single degenerating axons in adult brain and the first visualization of cleaved Caspase-3 in degenerating embryonic sensory axons in vivo, even single axons. iDISCO enables facile volume imaging of immunolabeled structures in complex tissues. PAPERCLIP:


Assuntos
Imageamento Tridimensional/métodos , Imuno-Histoquímica , Animais , Embrião de Mamíferos/citologia , Imuno-Histoquímica/economia , Camundongos , Degeneração Neural/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA