Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39463977

RESUMO

Nucleotide recoding RNA sequencing methods (NR-seq; TimeLapse-seq, SLAM-seq, TUC-seq, etc.) are powerful approaches for assaying transcript population dynamics. In addition, these methods have been extended to probe a host of regulated steps in the RNA life cycle. Current bioinformatic tools significantly constrain analyses of NR-seq data. To address this limitation, we developed EZbakR, an R package to facilitate a more comprehensive set of NR-seq analyses, and fastq2EZbakR, a Snakemake pipeline for flexible preprocessing of NR-seq datasets, collectively referred to as the EZbakR suite. Together, these tools generalize many aspects of the NR-seq analysis workflow. The fastq2EZbakR pipeline can assign reads to a diverse set of genomic features (e.g., genes, exons, splice junctions, etc.), and EZbakR can perform analyses on any combination of these features. EZbakR extends standard NR-seq mutational modeling to support multi-label analyses (e.g., s4U and s6G dual labeling), and implements an improved hierarchical model to better account for transcript-to-transcript variance in metabolic label incorporation. EZbakR also generalizes dynamical systems modeling of NR-seq data to support analyses of premature mRNA processing and flow between subcellular compartments. Finally, EZbakR implements flexible and well-powered comparative analyses of all estimated parameters via design matrix-specified generalized linear modeling. The EZbakR suite will thus allow researchers to make full, effective use of NR-seq data.

2.
bioRxiv ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39386505

RESUMO

Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation induced deaminase (AID), a single-stranded DNA cytidine deaminase that is thought to engage its substrate in the context of RNA polymerase II (RNAPII) transcription. Through a loss of function genetic screen, we identified numerous potential factors involved in SHM including ELOF1, a component of the RNAPII elongation complex that has been shown to function in DNA repair and transcription elongation. Loss of ELOF1 strongly compromises SHM, CSR, and AID targeting and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.

3.
ACS Chem Biol ; 19(9): 2081-2086, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39192734

RESUMO

We report the development of Tether-seq, a transcriptome-wide screen to probe RNA-small molecule interactions using disulfide tethering. This technique uses s4U metabolic labeling to provide sites for reversible and covalent attachment of small molecule disulfides to the transcriptome. By screening under reducing conditions, we identify interactions that are stabilized by binding over those driven by the reactivity of the RNA sites. When applied to cellular RNA, Tether-seq with a disulfide analogue of risdiplam, an FDA-approved drug that targets RNA to treat spinal muscular atrophy (SMA), revealed a number of potential binding sites, most prominently at a site within the cytochrome C oxidase 1 (COX1) transcript. Structure probing by SHAPE-MaP revealed a structured motif and confirmed binding to the lead molecule. This work demonstrates that these screens have the power to identify binding sites throughout the transcriptome and provide invaluable insight into the thermodynamic properties that define small molecule binding.


Assuntos
Dissulfetos , Transcriptoma , Sítios de Ligação , Dissulfetos/química , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , RNA/metabolismo , RNA/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química
4.
Nucleic Acids Res ; 52(16): 9886-9903, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38943343

RESUMO

Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.


Assuntos
Mitose , Poli A , Proteína I de Ligação a Poli(A) , Poliadenilação , Estabilidade de RNA , RNA Mensageiro , Transcriptoma , Humanos , Mitose/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosforilação , Poli A/metabolismo , Estabilidade de RNA/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células HeLa
5.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521065

RESUMO

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Assuntos
Cromatina , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
6.
Cell Rep ; 42(10): 113163, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742191

RESUMO

N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.


Assuntos
Leucemia , RNA , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Metabolismo Energético , Células-Tronco Hematopoéticas/metabolismo , RNA/metabolismo , Estabilidade de RNA/genética
7.
Nature ; 622(7981): 173-179, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731000

RESUMO

Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.


Assuntos
Acetilação , Cromatina , Lisina , Metilação , Processamento de Proteína Pós-Traducional , Sítio de Iniciação de Transcrição , Animais , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Histona Desacetilases/metabolismo
8.
Mol Cell ; 83(16): 2872-2883.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595555

RESUMO

SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Cromatina/genética , Microscopia Crioeletrônica , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina , Nucleossomos/genética , Humanos
9.
Nat Commun ; 14(1): 3426, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296103

RESUMO

Compact RNA structural motifs control many aspects of gene expression, but we lack methods for finding these structures in the vast expanse of multi-kilobase RNAs. To adopt specific 3-D shapes, many RNA modules must compress their RNA backbones together, bringing negatively charged phosphates into close proximity. This is often accomplished by recruiting multivalent cations (usually Mg2+), which stabilize these sites and neutralize regions of local negative charge. Coordinated lanthanide ions, such as terbium (III) (Tb3+), can also be recruited to these sites, where they induce efficient RNA cleavage, thereby revealing compact RNA 3-D modules. Until now, Tb3+ cleavage sites were monitored via low-throughput biochemical methods only applicable to small RNAs. Here we present Tb-seq, a high-throughput sequencing method for detecting compact tertiary structures in large RNAs. Tb-seq detects sharp backbone turns found in RNA tertiary structures and RNP interfaces, providing a way to scan transcriptomes for stable structural modules and potential riboregulatory motifs.


Assuntos
RNA , Térbio , Conformação de Ácido Nucleico , RNA/metabolismo , Térbio/metabolismo , Térbio/farmacologia , Motivos de Nucleotídeos , Cátions
10.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292657

RESUMO

RNA metabolic labeling using 4-thiouridine (s4U) captures the dynamics of RNA synthesis and decay. The power of this approach is dependent on appropriate quantification of labeled and unlabeled sequencing reads, which can be compromised by the apparent loss of s4U-labeled reads in a process we refer to as dropout. Here we show that s4U-containing transcripts can be selectively lost when RNA samples are handled under sub-optimal conditions, but that this loss can be minimized using an optimized protocol. We demonstrate a second cause of dropout in nucleotide recoding and RNA sequencing (NR-seq) experiments that is computational and downstream of library preparation. NR-seq experiments involve chemically converting s4U from a uridine analog to a cytidine analog and using the apparent T-to-C mutations to identify the populations of newly synthesized RNA. We show that high levels of T-to-C mutations can prevent read alignment with some computational pipelines, but that this bias can be overcome using improved alignment pipelines. Importantly, kinetic parameter estimates are affected by dropout independent of the NR chemistry employed, and all chemistries are practically indistinguishable in bulk, short-read RNA-seq experiments. Dropout is an avoidable problem that can be identified by including unlabeled controls, and mitigated through improved sample handing and read alignment that together improve the robustness and reproducibility of NR-seq experiments.

11.
RNA ; 29(7): 958-976, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028916

RESUMO

Differential expression analysis of RNA sequencing (RNA-seq) data can identify changes in cellular RNA levels, but provides limited information about the kinetic mechanisms underlying such changes. Nucleotide recoding RNA-seq methods (NR-seq; e.g., TimeLapse-seq, SLAM-seq, etc.) address this shortcoming and are widely used approaches to identify changes in RNA synthesis and degradation kinetics. While advanced statistical models implemented in user-friendly software (e.g., DESeq2) have ensured the statistical rigor of differential expression analyses, no such tools that facilitate differential kinetic analysis with NR-seq exist. Here, we report the development of Bayesian analysis of the kinetics of RNA (bakR; https:// github.com/simonlabcode/bakR), an R package to address this need. bakR relies on Bayesian hierarchical modeling of NR-seq data to increase statistical power by sharing information across transcripts. Analyses of simulated data confirmed that bakR implementations of the hierarchical model outperform attempts to analyze differential kinetics with existing models. bakR also uncovers biological signals in real NR-seq data sets and provides improved analyses of existing data sets. This work establishes bakR as an important tool for identifying differential RNA synthesis and degradation kinetics.


Assuntos
Software , Transcriptoma , Cinética , Teorema de Bayes , RNA/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos
12.
Nucleic Acids Res ; 50(19): e110, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36018791

RESUMO

Quantitative comparisons of RNA levels from different samples can lead to new biological understanding if they are able to distinguish biological variation from variable sample preparation. These challenges are pronounced in comparisons that require complex biochemical manipulations (e.g. isolating polysomes to study translation). Here, we present Transcript Regulation Identified by Labeling with Nucleoside Analogues in Cell Culture (TILAC), an internally controlled approach for quantitative comparisons of RNA content. TILAC uses two metabolic labels, 4-thiouridine (s4U) and 6-thioguanosine (s6G), to differentially label RNAs in cells, allowing experimental and control samples to be pooled prior to downstream biochemical manipulations. TILAC leverages nucleoside recoding chemistry to generate characteristic sequencing signatures for each label and uses statistical modeling to compare the abundance of RNA transcripts between samples. We verified the performance of TILAC in transcriptome-scale experiments involving RNA polymerase II inhibition and heat shock. We then applied TILAC to quantify changes in mRNA association with actively translating ribosomes during sodium arsenite stress and discovered a set of transcripts that are translationally upregulated, including MCM2 and DDX5. TILAC is broadly applicable to uncover differences between samples leading to improved biological insights.


Assuntos
Nucleosídeos , Tiouridina , Tiouridina/química , Análise de Sequência de RNA , RNA/química , RNA Mensageiro/metabolismo
13.
ACS Chem Biol ; 17(7): 1789-1798, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749470

RESUMO

The RNA decapping scavenger protein, DcpS, has recently been identified as a dependency in acute myeloid leukemia (AML). The potent DcpS inhibitor RG3039 attenuates AML cell viability, and shRNA knockdown of DcpS is also antiproliferative. Importantly, DcpS was found to be non-essential in normal human hematopoietic cells, which opens a therapeutic window for AML treatment by DcpS modulation. Considering this strong DcpS dependence in AML cell lines, we explored PROTAC-mediated degradation as an alternative strategy to modulate DcpS activity. Herein, we report the development of JCS-1, a PROTAC exhibiting effective degradation of DcpS at nanomolar concentrations. JCS-1 non-covalently binds DcpS with a RG3039-based warhead and recruits the E3 ligase VHL, which induces potent, rapid, and sustained DcpS degradation in several AML cell lines. JCS-1 serves as a chemical biology tool to interrogate DcpS degradation and associated changes in RNA processes in different cellular contexts, which may be an attractive strategy for the treatment of AML and other DcpS-dependent genetic disorders.


Assuntos
Endorribonucleases , Leucemia Mieloide Aguda , Humanos , Endorribonucleases/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , RNA Interferente Pequeno , Proteína Supressora de Tumor Von Hippel-Lindau
14.
Cell Rep ; 39(3): 110687, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443176

RESUMO

The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Mol Cell ; 82(6): 1107-1122.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303483

RESUMO

Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Fator de Processamento U2AF , Grânulos de Estresse , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Sítios de Splice de RNA , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Grânulos de Estresse/metabolismo
16.
Ann N Y Acad Sci ; 1506(1): 118-141, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791665

RESUMO

The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.


Assuntos
Congressos como Assunto/tendências , Epigênese Genética/genética , Marcação de Genes/tendências , RNA não Traduzido/administração & dosagem , RNA não Traduzido/genética , Relatório de Pesquisa , Animais , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Marcação de Genes/métodos , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/administração & dosagem , Pequeno RNA não Traduzido/genética , Transdução de Sinais/genética
17.
Mol Cell ; 81(21): 4398-4412.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34520723

RESUMO

Despite the critical regulatory function of promoter-proximal pausing, the influence of pausing kinetics on transcriptional control remains an active area of investigation. Here, we present Start-TimeLapse-seq (STL-seq), a method that captures the genome-wide kinetics of short, capped RNA turnover and reveals principles of regulation at the pause site. By measuring the rates of release into elongation and premature termination through the inhibition of pause release, we determine that pause-release rates are highly variable, and most promoter-proximal paused RNA polymerase II molecules prematurely terminate (∼80%). The preferred regulatory mechanism upon a hormonal stimulus (20-hydroxyecdysone) is to influence pause-release rather than termination rates. Transcriptional shutdown occurs concurrently with the induction of promoter-proximal termination under hyperosmotic stress, but paused transcripts from TATA box-containing promoters remain stable, demonstrating an important role for cis-acting DNA elements in pausing. STL-seq dissects the kinetics of pause release and termination, providing an opportunity to identify mechanisms of transcriptional regulation.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Metilação de DNA , Ecdisterona/química , Perfilação da Expressão Gênica , Técnicas Genéticas , Genoma , Hormônios , Cinética , Mutação , Osmose , Ligação Proteica , Transdução de Sinais
18.
Mol Cell ; 81(3): 502-513.e4, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400923

RESUMO

Stress-induced readthrough transcription results in the synthesis of downstream-of-gene (DoG)-containing transcripts. The mechanisms underlying DoG formation during cellular stress remain unknown. Nascent transcription profiles during DoG induction in human cell lines using TT-TimeLapse sequencing revealed widespread transcriptional repression upon hyperosmotic stress. Yet, DoGs are produced regardless of the transcriptional level of their upstream genes. ChIP sequencing confirmed that stress-induced redistribution of RNA polymerase (Pol) II correlates with the transcriptional output of genes. Stress-induced alterations in the Pol II interactome are observed by mass spectrometry. While certain cleavage and polyadenylation factors remain Pol II associated, Integrator complex subunits dissociate from Pol II under stress leading to a genome-wide loss of Integrator on DNA. Depleting the catalytic subunit of Integrator using siRNAs induces hundreds of readthrough transcripts, whose parental genes partially overlap those of stress-induced DoGs. Our results provide insights into the mechanisms underlying DoG production and how Integrator activity influences DoG transcription.


Assuntos
Endorribonucleases/metabolismo , Pressão Osmótica , RNA Polimerase II/metabolismo , RNA/biossíntese , Estresse Salino , Transcrição Gênica , Ativação Transcricional , Regulação para Baixo , Endorribonucleases/genética , Células HEK293 , Humanos , RNA/genética , RNA Polimerase II/genética , Fatores de Tempo
19.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33147444

RESUMO

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Vero , Internalização do Vírus
20.
Cell Chem Biol ; 28(4): 463-474.e7, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357462

RESUMO

DCP2 is an RNA-decapping enzyme that controls the stability of human RNAs that encode factors functioning in transcription and the immune response. While >1,800 human DCP2 substrates have been identified, compensatory expression changes secondary to genetic ablation of DCP2 have complicated a complete mapping of its regulome. Cell-permeable, selective chemical inhibitors of DCP2 could provide a powerful tool to study DCP2 specificity. Here, we report phage display selection of CP21, a bicyclic peptide ligand to DCP2. CP21 has high affinity and selectivity for DCP2 and inhibits DCP2 decapping activity toward selected RNA substrates in human cells. CP21 increases formation of P-bodies, liquid condensates enriched in intermediates of RNA decay, in a manner that resembles the deletion or mutation of DCP2. We used CP21 to identify 76 previously unreported DCP2 substrates. This work demonstrates that DCP2 inhibition can complement genetic approaches to study RNA decay.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Descoberta de Drogas , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Peptídeos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Endorribonucleases/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Conformação Molecular , Peptídeos/síntese química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA