Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Risk Anal ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179379

RESUMO

Water supply and sanitation are essential household services frequently shared in resource-poor settings. Shared sanitation can increase the risk of enteric pathogen transmission due to suboptimal cleanliness of facilities used by large numbers of individuals. It also can potentially increase the risk of respiratory disease transmission. As sanitation is an essential need, shared sanitation facilities may act as important respiratory pathogen transmission venues even with strict control measures such as stay-at-home recommendations in place. This analysis explores how behavioral and infrastructural conditions surrounding shared sanitation may individually and interactively influence respiratory pathogen transmission. We developed an individual-based community transmission model using COVID-19 as a motivating example parameterized from empirical literature to explore how transmission in shared latrines interacts with transmission at the community level. We explored mitigation strategies, including infrastructural and behavioral interventions. Our review of empirical literature confirms that shared sanitation venues in resource-poor settings are relatively small with poor ventilation and high use patterns. In these contexts, shared sanitation facilities may act as strong drivers of respiratory disease transmission, especially in areas reliant on shared facilities. Decreasing dependence on shared latrines was most effective at attenuating sanitation-associated transmission. Improvements to latrine ventilation and handwashing behavior were also able to decrease transmission. The type and order of interventions are important in successfully attenuating disease risk, with infrastructural and engineering controls being most effective when administered first, followed by behavioral controls after successful attenuation of sufficient alternate transmission routes. Beyond COVID-19, our modeling framework can be extended to address water, sanitation, and hygiene measures targeted at a range of environmentally mediated infectious diseases.

2.
Epidemiology ; 34(4): 589-600, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255265

RESUMO

BACKGROUND: Guidance on COVID-19 quarantine duration is often based on the maximum observed incubation periods assuming perfect compliance. However, the impact of longer quarantines may be subject to diminishing returns; the largest benefits of quarantine occur over the first few days. Additionally, the financial and psychological burdens of quarantine may motivate increases in noncompliance behavior. METHODS: We use a deterministic transmission model to identify the optimal length of quarantine to minimize transmission. We modeled the relation between noncompliance behavior and disease risk using a time-varying function of leaving quarantine based on studies from the literature. RESULTS: The first few days in quarantine were more crucial to control the spread of COVID-19; even when compliance is high, a 10-day quarantine was as effective in lowering transmission as a 14-day quarantine; under certain noncompliance scenarios a 5-day quarantine may become nearly protective as 14-day quarantine. CONCLUSION: Data to characterize compliance dynamics will help select optimal quarantine strategies that balance the trade-offs between social forces governing behavior and transmission dynamics.


Assuntos
COVID-19 , Quarentena , Humanos , COVID-19/prevenção & controle , Dinâmica de Grupo , Quarentena/psicologia , SARS-CoV-2 , Fidelidade a Diretrizes , Política Pública
3.
Sci Rep ; 13(1): 3881, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890140

RESUMO

As modeling tools and approaches become more advanced, ecological models are becoming more complex. Traditional sensitivity analyses can struggle to identify the nonlinearities and interactions emergent from such complexity, especially across broad swaths of parameter space. This limits understanding of the ecological mechanisms underlying model behavior. Machine learning approaches are a potential answer to this issue, given their predictive ability when applied to complex large datasets. While perceptions that machine learning is a "black box" linger, we seek to illuminate its interpretive potential in ecological modeling. To do so, we detail our process of applying random forests to complex model dynamics to produce both high predictive accuracy and elucidate the ecological mechanisms driving our predictions. Specifically, we employ an empirically rooted ontogenetically stage-structured consumer-resource simulation model. Using simulation parameters as feature inputs and simulation output as dependent variables in our random forests, we extended feature analyses into a simple graphical analysis from which we reduced model behavior to three core ecological mechanisms. These ecological mechanisms reveal the complex interactions between internal plant demography and trophic allocation driving community dynamics while preserving the predictive accuracy achieved by our random forests.


Assuntos
Modelos Teóricos , Algoritmo Florestas Aleatórias
4.
Trends Ecol Evol ; 38(3): 301-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437144

RESUMO

Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA