Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 43(11): 566-595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811746

RESUMO

In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.


Assuntos
Proteínas de Saccharomyces cerevisiae , Sirtuínas , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Origem de Replicação , Acetilação , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Replicação do DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Histona Desacetilases/metabolismo
2.
Cell Rep ; 42(7): 112792, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37454295

RESUMO

The ATR kinase safeguards genomic integrity during S phase, but how ATR protects DNA replication forks remains incompletely understood. Here, we combine four distinct assays to analyze ATR functions at ongoing and newly assembled replication forks upon replication inhibition by hydroxyurea. At ongoing forks, ATR inhibitor (ATRi) increases MRE11- and EXO1-mediated nascent DNA degradation from PrimPol-generated, single-stranded DNA (ssDNA) gaps. ATRi also exposes template ssDNA through fork uncoupling and nascent DNA degradation. Electron microscopy reveals that ATRi reduces reversed forks by increasing gap-dependent nascent DNA degradation. At new forks, ATRi triggers MRE11- and CtIP-initiated template DNA degradation by EXO1, exposing nascent ssDNA. Upon PARP inhibition, ATRi preferentially exacerbates gap-dependent nascent DNA degradation at ongoing forks in BRCA1/2-deficient cells and disrupts the restored gap protection in BRCA1-deficient, PARP-inhibitor-resistant cells. Thus, ATR protects ongoing and new forks through distinct mechanisms, providing an extended view of ATR's functions in stabilizing replication forks.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1 , Proteínas de Ligação a DNA , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Nat Commun ; 14(1): 252, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650183

RESUMO

Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Humanos , Masculino , Antineoplásicos/farmacologia , Proteína BRCA1/metabolismo , Reparo do DNA/genética , Genes BRCA2 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Resistencia a Medicamentos Antineoplásicos
4.
Mol Cancer Ther ; 22(2): 215-226, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228090

RESUMO

CRISPR Cas9-based screening is a powerful approach for identifying and characterizing novel drug targets. Here, we elucidate the synthetic lethal mechanism of deubiquitinating enzyme USP1 in cancers with underlying DNA damage vulnerabilities, specifically BRCA1/2 mutant tumors and a subset of BRCA1/2 wild-type (WT) tumors. In sensitive cells, pharmacologic inhibition of USP1 leads to decreased DNA synthesis concomitant with S-phase-specific DNA damage. Genome-wide CRISPR-Cas9 screens identify RAD18 and UBE2K, which promote PCNA mono- and polyubiquitination respectively, as mediators of USP1 dependency. The accumulation of mono- and polyubiquitinated PCNA following USP1 inhibition is associated with reduced PCNA protein levels. Ectopic expression of WT or ubiquitin-dead K164R PCNA reverses USP1 inhibitor sensitivity. Our results show, for the first time, that USP1 dependency hinges on the aberrant processing of mono- and polyubiquitinated PCNA. Moreover, this mechanism of USP1 dependency extends beyond BRCA1/2 mutant tumors to selected BRCA1/2 WT cancer cell lines enriched in ovarian and lung lineages. We further show PARP and USP1 inhibition are strongly synergistic in BRCA1/2 mutant tumors. We postulate USP1 dependency unveils a previously uncharacterized vulnerability linked to posttranslational modifications of PCNA. Taken together, USP1 inhibition may represent a novel therapeutic strategy for BRCA1/2 mutant tumors and a subset of BRCA1/2 WT tumors.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/genética , Ubiquitinação , Dano ao DNA , Neoplasias/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
5.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265486

RESUMO

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Assuntos
RNA Longo não Codificante , Telomerase , Homeostase do Telômero , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo , Estruturas R-Loop/genética , Reparo do DNA
6.
Nature ; 605(7909): 357-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508654

RESUMO

The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.


Assuntos
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinases , Proteólise , Fase S , Animais , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo
7.
Sci Adv ; 8(19): eabn1229, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559669

RESUMO

In small cell lung cancer (SCLC), acquired resistance to DNA-damaging therapy is challenging to study because rebiopsy is rarely performed. We used patient-derived xenograft models, established before therapy and after progression, to dissect acquired resistance to olaparib plus temozolomide (OT), a promising experimental therapy for relapsed SCLC. These pairs of serial models reveal alterations in both cell cycle kinetics and DNA replication and demonstrate both inter- and intratumoral heterogeneity in mechanisms of resistance. In one model pair, up-regulation of translesion DNA synthesis (TLS) enabled tolerance of OT-induced damage during DNA replication. TLS inhibitors restored sensitivity to OT both in vitro and in vivo, and similar synergistic effects were seen in additional SCLC cell lines. This represents the first described mechanism of acquired resistance to DNA damage in a patient with SCLC and highlights the potential of the serial model approach to investigate and overcome resistance to therapy in SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Linhagem Celular Tumoral , DNA , Dano ao DNA , Replicação do DNA , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ftalazinas , Piperazinas , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Temozolomida/farmacologia
8.
J Invest Dermatol ; 142(5): 1413-1424.e6, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34687746

RESUMO

Acral and mucosal melanomas arise from sun-protected sites, disproportionately impact darker-skinned individuals, and exact higher mortality than common types of cutaneous melanoma. Genetically, acral and mucosal melanomas harbor more alterations of KIT than typical cutaneous melanomas. Because KIT-mutated melanomas remain largely treatment resistant, we set out to create a faithful murine KIT-driven allograft model to define newer therapeutic strategies. Using the prevalent human KITK642E activating mutation, the murine mKITK641E cellular avatars show features of transformation in vitro and tumorigenicity in immunocompetent C57BL/6J mice. mKITK641E cells proliferate more rapidly, exhibit greater chromosomal aberrations, and sustain three-dimensional spheroid expansion and aggressive tumor growth in C57BL/6J mice compared with their vector-controlled cells. We further verified the functional dependence of these cells on KITK641E with both genetic and pharmacologic suppression. Using these cells, we performed a screen of 199 kinase inhibitors and identified a selective vulnerability to Chk1/ATR inhibition in the KITK641E-activated cells. Mechanistically, we subsequently showed that KITK641E induces a significantly increased level of replication stress compared with murine vector‒controlled cells. These results showcase an allograft model of human KIT-driven melanomas, which uncovered an unappreciated role for replication stress in KIT melanomagenesis and implicated a possible therapeutic strategy with Chk1/ATR inhibitors.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Pontos de Checagem do Ciclo Celular , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
9.
Mol Cell ; 81(19): 4026-4040.e8, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624216

RESUMO

PRIMPOL repriming allows DNA replication to skip DNA lesions, leading to ssDNA gaps. These gaps must be filled to preserve genome stability. Using a DNA fiber approach to directly monitor gap filling, we studied the post-replicative mechanisms that fill the ssDNA gaps generated in cisplatin-treated cells upon increased PRIMPOL expression or when replication fork reversal is defective because of SMARCAL1 inactivation or PARP inhibition. We found that a mechanism dependent on the E3 ubiquitin ligase RAD18, PCNA monoubiquitination, and the REV1 and POLζ translesion synthesis polymerases promotes gap filling in G2. The E2-conjugating enzyme UBC13, the RAD51 recombinase, and REV1-POLζ are instead responsible for gap filling in S, suggesting that temporally distinct pathways of gap filling operate throughout the cell cycle. Furthermore, we found that BRCA1 and BRCA2 promote gap filling by limiting MRE11 activity and that simultaneously targeting fork reversal and gap filling enhances chemosensitivity in BRCA-deficient cells.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Primase/metabolismo , Reparo do DNA , Replicação do DNA , DNA de Neoplasias/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Fase G2 , Enzimas Multifuncionais/metabolismo , Neoplasias/metabolismo , Fase S , Antineoplásicos/farmacologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Células HEK293 , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Enzimas Multifuncionais/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Tempo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Genes Dev ; 35(17-18): 1271-1289, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385259

RESUMO

PARP inhibitor (PARPi) is widely used to treat BRCA1/2-deficient tumors, but why PARPi is more effective than other DNA-damaging drugs is unclear. Here, we show that PARPi generates DNA double-strand breaks (DSBs) predominantly in a trans cell cycle manner. During the first S phase after PARPi exposure, PARPi induces single-stranded DNA (ssDNA) gaps behind DNA replication forks. By trapping PARP on DNA, PARPi prevents the completion of gap repair until the next S phase, leading to collisions of replication forks with ssDNA gaps and a surge of DSBs. In the second S phase, BRCA1/2-deficient cells are unable to suppress origin firing through ATR, resulting in continuous DNA synthesis and more DSBs. Furthermore, BRCA1/2-deficient cells cannot recruit RAD51 to repair collapsed forks. Thus, PARPi induces DSBs progressively through trans cell cycle ssDNA gaps, and BRCA1/2-deficient cells fail to slow down and repair DSBs over multiple cell cycles, explaining the unique efficacy of PARPi in BRCA1/2-deficient cells.


Assuntos
Proteína BRCA2 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
11.
Curr Opin Genet Dev ; 71: 92-98, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34329853

RESUMO

The maintenance of genomic integrity relies on the coordination of a wide range of cellular processes and efficient repair of DNA damage. Since its discovery over two decades ago, the ATR kinase has been recognized as the master regulator of the circuitry orchestrating the cellular responses to DNA damage and replication stress. Recent studies reveal that ATR additionally functions in the unperturbed cell cycle through its control of replication fork speed and stability, replication origin firing, completion of genome duplication, and chromosome segregation. Here, we discuss several recently discovered mechanisms through which ATR safeguards genomic integrity during the cell cycle, from S phase to mitosis.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Mitose/genética
12.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33055160

RESUMO

The cyclic GMP-AMP synthase (cGAS), a sensor of cytosolic DNA, is critical for the innate immune response. Here, we show that loss of cGAS in untransformed and cancer cells results in uncontrolled DNA replication, hyperproliferation, and genomic instability. While the majority of cGAS is cytoplasmic, a fraction of cGAS associates with chromatin. cGAS interacts with replication fork proteins in a DNA binding-dependent manner, suggesting that cGAS encounters replication forks in DNA. Independent of cGAMP and STING, cGAS slows replication forks by binding to DNA in the nucleus. In the absence of cGAS, replication forks are accelerated, but fork stability is compromised. Consequently, cGAS-deficient cells are exposed to replication stress and become increasingly sensitive to radiation and chemotherapy. Thus, by acting as a decelerator of DNA replication forks, cGAS controls replication dynamics and suppresses replication-associated DNA damage, suggesting that cGAS is an attractive target for exploiting the genomic instability of cancer cells.

13.
Cancer Res ; 80(18): 3841-3854, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690724

RESUMO

Inactivation of SMARCA4/BRG1, the core ATPase subunit of mammalian SWI/SNF complexes, occurs at very high frequencies in non-small cell lung cancers (NSCLC). There are no targeted therapies for this subset of lung cancers, nor is it known how mutations in BRG1 contribute to lung cancer progression. Using a combination of gain- and loss-of-function approaches, we demonstrate that deletion of BRG1 in lung cancer leads to activation of replication stress responses. Single-molecule assessment of replication fork dynamics in BRG1-deficient cells revealed increased origin firing mediated by the prelicensing protein, CDC6. Quantitative mass spectrometry and coimmunoprecipitation assays showed that BRG1-containing SWI/SNF complexes interact with RPA complexes. Finally, BRG1-deficient lung cancers were sensitive to pharmacologic inhibition of ATR. These findings provide novel mechanistic insight into BRG1-mutant lung cancers and suggest that their dependency on ATR can be leveraged therapeutically and potentially expanded to BRG1-mutant cancers in other tissues. SIGNIFICANCE: These findings indicate that inhibition of ATR is a promising therapy for the 10% of non-small cell lung cancer patients harboring mutations in SMARCA4/BRG1. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/18/3841/F1.large.jpg.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Helicases/genética , Deleção de Genes , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , DNA Helicases/deficiência , Progressão da Doença , Feminino , Fatores de Transcrição Forkhead , Edição de Genes , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/deficiência
14.
Clin Cancer Res ; 26(18): 4852-4862, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32571788

RESUMO

PURPOSE: Plasma genotyping may identify mutations in potentially "actionable" cancer genes, such as BRCA1/2, but their clinical significance is not well-defined. We evaluated the characteristics of somatically acquired BRCA1/2 mutations in patients with metastatic breast cancer (MBC). EXPERIMENTAL DESIGN: Patients with MBC undergoing routine cell-free DNA (cfDNA) next-generation sequencing (73-gene panel) before starting a new therapy were included. Somatic BRCA1/2 mutations were classified as known germline pathogenic mutations or novel variants, and linked to clinicopathologic characteristics. The effect of the PARP inhibitor, olaparib, was assessed in vitro, using cultured circulating tumor cells (CTCs) from a patient with a somatically acquired BRCA1 mutation and a second patient with an acquired BRCA2 mutation. RESULTS: Among 215 patients with MBC, 29 (13.5%) had somatic cfDNA BRCA1/2 mutations [nine (4%) known germline pathogenic and rest (9%) novel variants]. Known germline pathogenic BRCA1/2 mutations were common in younger patients (P = 0.008), those with triple-negative disease (P = 0.022), and they were more likely to be protein-truncating alterations and be associated with TP53 mutations. Functional analysis of a CTC culture harboring a somatic BRCA1 mutation demonstrated high sensitivity to PARP inhibition, while another CTC culture harboring a somatic BRCA2 mutation showed no differential sensitivity. Across the entire cohort, APOBEC mutational signatures (COSMIC Signatures 2 and 13) and the "BRCA" mutational signature (COSMIC Signature 3) were present in BRCA1/2-mutant and wild-type cases, demonstrating the high mutational burden associated with advanced MBC. CONCLUSIONS: Somatic BRCA1/2 mutations are readily detectable in MBC by cfDNA analysis, and may be present as both known germline pathogenic and novel variants.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , DNA Tumoral Circulante/genética , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , Células Neoplásicas Circulantes/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Retrospectivos , Sequenciamento do Exoma
15.
Mol Cell ; 74(6): 1103-1105, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226273

RESUMO

In this issue, Li et al. (2019) report a previously unknown Ca2+-CaMKK2-AMPK signaling cascade that protects stalled forks from degradation by phosphorylating and inhibiting the EXO1 nuclease, revealing a surprising role for Ca2+ influx in the maintenance of genomic stability.


Assuntos
Proteínas Quinases Ativadas por AMP , Cálcio , Replicação do DNA , Exodesoxirribonucleases , Fosforilação
16.
PLoS Genet ; 14(4): e1007356, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659581

RESUMO

The evolutionarily-conserved sirtuin family of histone deacetylases regulates a multitude of DNA-associated processes. A recent genome-wide screen conducted in the yeast Saccharomyces cerevisiae identified Yku70/80, which regulate nonhomologous end-joining (NHEJ) and telomere structure, as being essential for cell proliferation in the presence of the pan-sirtuin inhibitor nicotinamide (NAM). Here, we show that sirtuin-dependent deacetylation of both histone H3 lysine 56 and H4 lysine 16 promotes growth of yku70Δ and yku80Δ cells, and that the NAM sensitivity of these mutants is not caused by defects in DNA double-strand break repair by NHEJ, but rather by their inability to maintain normal telomere length. Indeed, our results indicate that in the absence of sirtuin activity, cells with abnormally short telomeres, e.g., yku70/80Δ or est1/2Δ mutants, present striking defects in S phase progression. Our data further suggest that early firing of replication origins at short telomeres compromises the cellular response to NAM- and genotoxin-induced replicative stress. Finally, we show that reducing H4K16ac in yku70Δ cells limits activation of the DNA damage checkpoint kinase Rad53 in response to replicative stress, which promotes usage of translesion synthesis and S phase progression. Our results reveal a novel interplay between sirtuin-mediated regulation of chromatin structure and telomere-regulating factors in promoting timely completion of S phase upon replicative stress.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , Replicação do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Niacinamida/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
17.
Sci Rep ; 6: 36013, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782169

RESUMO

The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.


Assuntos
Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Ácido Valproico/farmacologia , Ciclo Celular/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nucleic Acids Res ; 44(6): 2706-26, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26748095

RESUMO

The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins.


Assuntos
Cromatina/enzimologia , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Histonas/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Acetilação/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Dano ao DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Niacinamida/farmacologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Estresse Fisiológico
19.
Genetics ; 200(1): 185-205, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25786853

RESUMO

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.


Assuntos
Dano ao DNA , Histona Desacetilases/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histona Desacetilases/genética , Metilação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Cell Cycle ; 13(7): 1078-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24553123

RESUMO

Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response is still unclear. Here we show that a major DSB sensor, the Mre11-Rad50-Xrs2 (MRX) complex, is regulated by cell cycle-dependent phosphorylation specifically in mitosis. This modification depends on the cyclin-dependent kinase Cdc28/Cdk1, and abrogation of Xrs2 and Mre11 phosphorylation results in a marked preference for DSB repair through NHEJ. Importantly, we show that phosphorylation of the MRX complex after DNA damage and during mitosis are regulated independently of each other by Tel1/ATM and Cdc28/Cdk1 kinases. Collectively, our results unravel an intricate network of phosphoregulatory mechanisms that act through the MRX complex to modulate DSB repair efficiency during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Fúngico/metabolismo , Mitose , Fosforilação , Saccharomyces cerevisiae/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA