Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JASA Express Lett ; 1(7): 071201, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-36154647

RESUMO

Use of underwater passive acoustic datasets for species-specific inference requires robust classification systems to identify encounters to species from characteristics of detected sounds. A suite of routines designed to efficiently detect cetacean sounds, extract features, and classify the detection to species is described using ship-based, visually verified detections of false killer whales (Pseudorca crassidens). The best-performing model included features from clicks, whistles, and burst pulses, which correctly classified 99.6% of events. This case study illustrates use of these tools to build classifiers for any group of cetacean species and assess classification confidence when visual confirmation is not available.


Assuntos
Golfinhos , Acústica , Animais , Cetáceos , Havaí , Ilhas
2.
Proc Biol Sci ; 287(1921): 20200070, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32070257

RESUMO

Mid-frequency active sonar (MFAS), used for antisubmarine warfare (ASW), has been associated with multiple beaked whale (BW) mass stranding events. Multinational naval ASW exercises have used MFAS offshore of the Mariana Archipelago semi-annually since 2006. We report BW and MFAS acoustic activity near the islands of Saipan and Tinian from March 2010 to November 2014. Signals from Cuvier's (Ziphius cavirostris) and Blainville's beaked whales (Mesoplodon densirostris), and a third unidentified BW species, were detected throughout the recording period. Both recorders documented MFAS on 21 August 2011 before two Cuvier's beaked whales stranded on 22-23 August 2011. We compared the history of known naval operations and BW strandings from the Mariana Archipelago to consider potential threats to BW populations. Eight BW stranding events between June 2006 and January 2019 each included one to three animals. Half of these strandings occurred during or within 6 days after naval activities, and this co-occurrence is highly significant. We highlight strandings of individual BWs can be associated with ASW, and emphasize the value of ongoing passive acoustic monitoring, especially for beaked whales that are difficult to visually detect at sea. We strongly recommend more visual monitoring efforts, at sea and along coastlines, for stranded cetaceans before, during and after naval exercises.


Assuntos
Navios , Baleias , Acústica , Animais , Mergulho , Micronésia , Som
3.
PLoS One ; 9(1): e86072, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465877

RESUMO

At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM) echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range.


Assuntos
Ecolocação , Análise Espaço-Temporal , Vocalização Animal , Baleias/fisiologia , Animais , Masculino , Oceanografia , Dinâmica Populacional , Estações do Ano
4.
J Acoust Soc Am ; 134(3): 2293-301, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23967959

RESUMO

Beaked whale echolocation signals are mostly frequency-modulated (FM) upsweep pulses and appear to be species specific. Evolutionary processes of niche separation may have driven differentiation of beaked whale signals used for spatial orientation and foraging. FM pulses of eight species of beaked whales were identified, as well as five distinct pulse types of unknown species, but presumed to be from beaked whales. Current evidence suggests these five distinct but unidentified FM pulse types are also species-specific and are each produced by a separate species. There may be a relationship between adult body length and center frequency with smaller whales producing higher frequency signals. This could be due to anatomical and physiological restraints or it could be an evolutionary adaption for detection of smaller prey for smaller whales with higher resolution using higher frequencies. The disadvantage of higher frequencies is a shorter detection range. Whales echolocating with the highest frequencies, or broadband, likely lower source level signals also use a higher repetition rate, which might compensate for the shorter detection range. Habitat modeling with acoustic detections should give further insights into how niches and prey may have shaped species-specific FM pulse types.


Assuntos
Ecolocação , Vocalização Animal , Baleias/fisiologia , Acústica , Adaptação Fisiológica , Animais , Evolução Biológica , Comportamento Alimentar , Comportamento Predatório , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
5.
J Acoust Soc Am ; 131(4): EL295-301, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22502484

RESUMO

Killer whales in the North Pacific, similar to Atlantic populations, produce high-frequency modulated signals, based on acoustic recordings from ship-based hydrophone arrays and autonomous recorders at multiple locations. The median peak frequency of these signals ranged from 19.6-36.1 kHz and median duration ranged from 50-163 ms. Source levels were 185-193 dB peak-to-peak re: 1 µPa at 1 m. These uniform, repetitive, down-swept signals are similar to bat echolocation signals and possibly could have echolocation functionality. A large geographic range of occurrence suggests that different killer whale ecotypes may utilize these signals.


Assuntos
Vocalização Animal/fisiologia , Orca/fisiologia , Animais , Ecolocação/fisiologia , Espectrografia do Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA