Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(11): 1810-1821, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657900

RESUMO

Protein engineering is a means to optimize protein therapeutics developed for the treatment of so far incurable diseases including cancers and genetic disorders. Here we report on an engineering approach in which we successfully increased the catalytic rate constant of an enzyme that is presently evaluated in enzyme replacement therapies (ERT) of a lysosomal storage disease (LSD). Although ERT is a treatment option for many LSDs, outcomes are lagging far behind expectations for most of them. This has been ascribed to insufficient enzyme activities accumulating in tissues difficult to target such as brain and peripheral nerves. We show for human arylsulfatase A (hARSA) that the activity of a therapeutic enzyme can be substantially increased by reversing activity-diminishing and by inserting activity-promoting amino acid substitutions that had occurred in the evolution of hominids and non-human mammals, respectively. The potential of this approach, here designated as evolutionary redesign, was highlighted by the observation that murinization of only 1 or 3 amino acid positions increased the hARSA activity 3- and 5-fold, with little impact on stability, respectively. The two kinetically optimized hARSA variants showed no immunogenic potential in ERT of a humanized ARSA knockout mouse model of metachromatic leukodystrophy (MLD) and reduced lysosomal storage of kidney, peripheral and central nervous system up to 3-fold more efficiently than wild-type hARSA. Due to their safety profile and higher therapeutic potential the engineered hARSA variants might represent major advances for future enzyme-based therapies of MLD and stimulate analogous approaches for other enzyme therapeutics.


Assuntos
Cerebrosídeo Sulfatase/genética , Terapia de Reposição de Enzimas/métodos , Terapia Genética , Leucodistrofia Metacromática/terapia , Doenças por Armazenamento dos Lisossomos/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Cerebrosídeo Sulfatase/uso terapêutico , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Rim/metabolismo , Rim/patologia , Cinética , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/enzimologia , Lisossomos/genética , Camundongos , Camundongos Knockout , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Engenharia de Proteínas
2.
Am J Med Genet A ; 116A(3): 238-42, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12503099

RESUMO

Metachromatic leukodystrophy (OMIM 250100) is a lysosomal storage disease caused by the deficiency of arylsulfatase A (ARSA, EC 3.1.6.8). This disease affects mainly the nervous system, because patients cannot degrade 3-O-sulfo-galactosylceramide (sulfatide), a major myelin lipid. Here we describe the characterization of the biochemical effects of two arylsulfatase A missense mutations, P425T and C300F. Transfection experiments demonstrate the expression of residual ARSA enzyme activity for P425T, but not for C300F substituted ARSA. Relative specific activity determination showed that the P425T substituted enzyme has retained about 12% of specific enzyme activity, whereas the C300F substituted enzyme is reduced to less than 1%. Pulse-chase experiments reveal that both mutant proteins are unstable, with a half life of less than 6 hr. Increased secretion upon addition of NH(4)Cl indicates that the mutant proteins can pass the Golgi apparatus and thus are not degraded in the endoplasmic reticulum (ER), but in the lysosomes. This is supported by experiments, which demonstrate the presence of mannose-6-phosphate residues on the oligosaccharide side chains of the mutant proteins. Addition of the cysteine protease inhibitor leupeptin increases the amount of ARSA activity in cells expressing the P425T substituted enzyme, whereas no increase in activity was seen with C300F substituted ARSA.


Assuntos
Arilsulfatases/genética , Arilsulfatases/metabolismo , Cloreto de Amônio/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática/genética , Humanos , Lisossomos/metabolismo , Mutação de Sentido Incorreto , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA