Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6149, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034317

RESUMO

Surface passivation, a desirable natural consequence during initial oxidation of alloys, is the foundation for functioning of corrosion and oxidation resistant alloys ranging from industrial stainless steel to kitchen utensils. This initial oxidation has been long perceived to vary with crystal facet, however, the underlying mechanism remains elusive. Here, using in situ environmental transmission electron microscopy, we gain atomic details on crystal facet dependent initial oxidation behavior in a model Ni-5Cr alloy. We find the (001) surface shows higher initial oxidation resistance as compared to the (111) surface. We reveal the crystal facet dependent oxidation is related to an interfacial atomic sieving effect, wherein the oxide/metal interface selectively promotes diffusion of certain atomic species. Density functional theory calculations rationalize the oxygen diffusion across Ni(111)/NiO(111) interface, as contrasted with Ni(001)/NiO(111), is enhanced. We unveil that crystal facet with initial fast oxidation rate could conversely switch to a slow steady state oxidation.

2.
Phys Chem Chem Phys ; 24(31): 18751-18763, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900042

RESUMO

Natural sulfidation of silver nanomaterials can passivate the surface, while preserving desirable optical and electrical properties, which is beneficial for limiting Ag+ release and cytotoxicity. But little is known at the atomic scale about silver sulfidation mechanisms, particularly on different crystallographic terminations. Using density functional theory (DFT) calculations, we examined the process of H2S sorption and reaction on Ag(100) surfaces relevant to Ag nanowires (AgNWs). DFT energy minimizations predict a strong dissociative chemisorption of H2S on the surface yielding co-adsorbed sulfide and hydrogen atoms in specific surface sites. However, nudged elastic band (NEB) calculations suggest relatively large activation energies for both the first and second dissociation steps, due in part to overcoming the energy to cleave the S-H bond and attendant site migration from an on-top Ag site position to a hollow site position of the bound S atom. The large barriers associated with the dissociative chemisorption reaction for gas-phase H2S points to the importance of including thermochemical contributions and the influence of other components in more complex environmental media such as air or water to help complete the mechanistic picture of silver sulfidation and passivation for realistic systems.

3.
J Chem Theory Comput ; 13(6): 2881-2889, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28535342

RESUMO

We investigate finite-size effects on diffusion in confined fluids using molecular dynamics simulations and hydrodynamic calculations. Specifically, we consider a Lennard-Jones fluid in slit pores without slip at the interface and show that the use of periodic boundary conditions in the directions along the surfaces results in dramatic finite-size effects, in addition to that of the physically relevant confining length. As in the simulation of bulk fluids, these effects arise from spurious hydrodynamic interactions between periodic images and from the constraint of total momentum conservation. We derive analytical expressions for the correction to the diffusion coefficient in the limits of both elongated and flat systems, which are in excellent agreement with the molecular simulation results except for the narrowest pores, where the discreteness of the fluid particles starts to play a role. The present work implies that the diffusion coefficients for wide nanopores computed using elongated boxes suffer from finite-size artifacts which had not been previously appreciated. In addition, our analytical expression provides the correction to be applied to the simulation results for finite (possibly small) systems. It applies not only to molecular but also to all mesoscopic hydrodynamic simulations, including Lattice-Boltzmann, Multiparticle Collision Dynamics or Dissipative Particle Dynamics, which are often used to investigate confined soft matter involving colloidal particles and polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA