Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869542

RESUMO

Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic is worsened by the ease with which FTN can be derivatized into numerous derivatives. Understanding the chemical properties/behaviors of the FTN class of compounds is critical for developing effective chemical detection schemes using nanoparticles (NPs) to optimize important chemical interactions. Halogen bonding (XB) is an intermolecular interaction between a polarized halogen atom on a molecule and e--rich sites on another molecule, the latter of which is present at two or more sites on most fentanyl-type structures. Density functional theory (DFT) is used to identify these XB acceptor sites on different FTN derivatives. The high toxicity of these compounds necessitated a "fragmentation" strategy where smaller, non-toxic molecules resembling parts of the opioids acted as mimics of XB acceptor sites present on intact FTN and its derivatives. DFT of the fragments' interactions informed solution measurements of XB using 19F NMR titrations as well as electrochemical measurements of XB at self-assembled monolayer (SAM)-modified electrodes featuring XB donor ligands. Gold NPs, known as monolayer-protected clusters (MPCs), were also functionalized with strong XB donor ligands and assembled into films, and their interactions with FTN "fragments" were studied using voltammetry. Ultimately, spectroscopy and TEM analysis were combined to study whole-molecule FTN interactions with the functionalized MPCs in solution. The results suggested that the strongest XB interaction site on FTN, while common to most of the drug's derivatives, is not strong enough to induce NP-aggregation detection but may be better exploited in sensing schemes involving films.

2.
ACS Appl Nano Mater ; 6(10): 8367-8381, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37260915

RESUMO

Neonicotinoid (NN) pesticides have emerged globally as one of the most widely used agricultural tools for protecting crops from pest damage and boosting food production. Unfortunately, some NN compounds, such as extensively employed imidacloprid-based pesticides, have also been identified as likely endangering critical pollinating insects like honey bees. To this end, NN pesticides pose a potential threat to world food supplies. As more countries restrict or prohibit the use of NN pesticides, tools are needed to effectively and quickly identify the presence of NN compounds like imidacloprid on site (e.g., in storage areas on farms or pesticide distribution warehouses). This study represents a proof-of-concept where the colloidal properties of specifically modified gold nanoparticles (Au-NPs) able to engage in the rare intermolecular interaction of halogen bonding (XB) can result in the detection of certain NN compounds. Density functional theory and diffusion-ordered NMR spectroscopy (DOSY NMR) are used to explore the fundamental XB interactions between strong XB-donor structures and NN compounds, with the latter found to possess multiple XB-acceptor binding sites. A fundamental understanding of these XB interactions allows for the functionalization of alkanethiolate-stabilized Au-NPs, known as monolayer-protected gold clusters (MPCs), with XB-donor capability (f-MPCs). In the presence of certain NN compounds such as imidacloprid, the f-MPCs subsequently exhibit visual XB-induced aggregation that is also measured with absorption (UV-vis) spectroscopy and verified with transmission electron microscopy (TEM) imaging. The demonstrated f-MPC-aggregation detection scheme has a number of favorable attributes, including quickly reporting the presence of the NN target, requiring only micrograms of suspect material, and being highly selective for imidacloprid, the most prevalent and most important NN insecticide compound. Requiring no instrumentation, the presented methodology can be envisioned as a simple screening test in which dipping a cotton swab of an unknown powder from a surface in a f-MPC solution causes f-MPCs to aggregate and yield a preliminary indication of imidacloprid presence.

3.
Langmuir ; 38(15): 4747-4762, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35385292

RESUMO

The use of functionalized nanoparticles (NPs) and their aggregation in the presence of a targeted analyte is a well-established molecular detection strategy predicated on harnessing specific molecular interactions to the NP periphery. Molecules able to specifically interact with the functionalized NPs alter the unique optical and electrochemical properties of the NPs as a function of interparticle spacing. While many intermolecular interactions have been successfully exploited in this manner in conjunction with aqueous NP systems, the use of non-aqueous NPs in the same capacity is significantly less explored. A fundamental interaction that has not been previously investigated in NP schemes is halogen bonding (XB). XB is an orthogonal, electrostatic interaction between a region of positive electrostatic potential (δ+) on a halogen atom (i.e., XB donor) and a negative (δ-) Lewis base (XB acceptor) molecule. To couple XB with NP systems, ligands featuring a molecular structure that promotes XB interactions need to be identified, optimized, and synthesized for subsequent attachment to NPs. Herein, density functional theory (DFT) and NMR techniques are used to identify a strong XB-donor moiety (-C6F4I) and a synthetic scheme for a thiolate ligand featuring that functionality is devised and executed with high purity/yield (78%). Ligand-exchange reactions allow functionalization of non-aqueous alkanethiolate-protected gold NPs or monolayer-protected clusters (MPCs) with the XB-donor ligands. Functionalized MPCs (f-MPCs), within both assembled films and in solution, are shown to engage in XB interactions with target XB-acceptor molecules. Molecular recognition events, including induced aggregation of the f-MPCs, are characterized with UV-vis spectroscopy, cyclic voltammetry, TEM imaging, and diffusion-ordered spectroscopy NMR with limits of detection of 50-100 nM for strong XB acceptors. While fundamental exploration of XB interactions is ongoing, this study represents a step toward utilizing XB within molecular detection schemes, an application with implications for supramolecular chemistry, forensic, and environmental chemical sensing.

4.
J Phys Chem A ; 125(42): 9377-9393, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34661411

RESUMO

Halogen bonding (XB) is a highly directional, non-covalent intermolecular interaction between a molecule (XB donor) presenting a halogen with an electron-deficient region or sigma hole (σ-hole) and an electron-rich or Lewis-base molecule (XB acceptor). A systematic, experimental, and theoretical study of solution-phase XB strength as a function of the molecular structure for both XB donor and acceptor molecules is presented. The impact of specific structural features is assessed using 19F and 1H nuclear magnetic resonance (NMR) titrations to determine association constants, density functional theory calculations for interaction energies and bond lengths, as well as 19F-1H HOESY NMR measurements of intermolecular cross-relaxation between the interacting XB donor-acceptor adducts. For XB donor molecules (perfluoro-halogenated benzenes), results indicate the critical importance of iodine coupled with electron-withdrawing entities. Prominent structural components of XB acceptor molecules include a central atom working in conjunction with a Lewis-base atom to present high electron density directed at the σ-hole (e.g., tributylphosphine oxide). Additionally, larger surrounding aliphatic R groups (e.g., butyl and octyl) were found to significantly stabilize strong XB, particularly in solvents that promote the interaction. With a more thorough understanding of structure-optimized XB, one can envision harnessing XB interactions more strategically for specific design of optimal materials and chemical applications.

5.
ACS Chem Biol ; 11(2): 460-9, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26677870

RESUMO

The anticancer molecule taxol (Paclitaxel) stands as one of the most medically and economically important natural products. However, despite decades of extensive study, its biosynthesis remains poorly understood. Unpredictable behavior of the first oxygenation enzyme, taxadiene-5α-hydroxylase, which produces a range of undesired products, currently stands as a key bottleneck to improved taxol production. We herein present chemical and biological evidence of an unreported epoxidase activity of taxadiene-5α-hydroxylase that puts into question the previously proposed radical-rebound mechanism. We demonstrate that the poor selectivity of taxadiene-5α-hydroxylase arises from nonselective degradation of an epoxide intermediate produced via a selective oxidation step, rather than from promiscuous oxidation, as previously proposed. We support these conclusions by demonstrating variable enzyme behavior in differing hosts and conditions, similarity of products and product ratios generated from chemical epoxidation, and taxadiene-5α-hydroxylase, and differing enzymatic activity on alternative taxadiene isomers. Additionally, we use directed mutagenesis to describe the oxidizing species of the P450, demonstrate that further in vivo functionalization of oxidized taxadiene is unable to improve selectivity of the oxidation, and show that multiple products are produced in the Taxus cuspidata and are not simply an artifact of heterologous expression. Our results highlight an important, and previously unknown, obstacle to improved taxol production. We further offer insights to overcome the challenges posed by an epoxide-mediated reaction, which sets the basis for further engineering of taxol biosynthesis.


Assuntos
Alcenos/metabolismo , Diterpenos/metabolismo , Oxigenases de Função Mista/metabolismo , Taxus/enzimologia , Alcenos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Diterpenos/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Isomerismo , Modelos Moleculares , Oxirredução , Paclitaxel/química , Paclitaxel/metabolismo , Taxus/química , Taxus/metabolismo
6.
Biochemistry ; 54(21): 3231-4, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25966286

RESUMO

The newly discovered light-dependent transcription factor CarH uses adenosylcobalamin as a light sensor to regulate expression of protective genes in bacteria upon exposure to sunlight. This use of adenosylcobalamin is a clever adaptation of a classic enzyme cofactor, taking advantage of its photolabile Co-C bond. However, it is also puzzling in that photolysis of adenosylcobalamin generates the 5'-deoxyadenosyl radical that could damage DNA. Here, using liquid chromatography and spectroscopic techniques, we demonstrate that CarH suppresses release of the 5'-deoxyadenosyl radical and instead effects conversion to a nonreactive 4',5'-anhydroadenosine. In this manner, CarH safeguards use of adenosylcobalamin in light-dependent gene regulation.


Assuntos
Adenosina/análogos & derivados , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , Fotólise , Fatores de Transcrição/metabolismo , Adenosina/metabolismo , Luz
7.
J Am Chem Soc ; 136(31): 10910-3, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25036528

RESUMO

We report here the polymerization of several 7-isopropylidene-2,3-disubstituted norbornadienes, 7-oxa-2,3-dicarboalkoxynorbornadienes, and 11-oxa-benzonorbornadienes with a single tungsten oxo alkylidene catalyst, W(O)(CH-t-Bu)(OHMT)(Me2Pyr) (OHMT = 2,6-dimesitylphenoxide; Me2Pyr = 2,5-dimethylpyrrolide) to give cis, stereoregular polymers. The tacticities of the menthyl ester derivatives of two polymers were determined for two types. For poly(7-isopropylidene-2,3-dicarbomenthoxynorbornadiene) the structure was shown to be cis,isotactic, while for poly(7-oxa-2,3-dicarbomenthoxynorbornadiene) the structure was shown to be cis,syndiotactic. A bis-trifluoromethyl-7-isopropylidene norbornadiene was not polymerized stereoregularly with W(O)(CHCMe2Ph)(Me2Pyr)(OHMT) alone, but a cis, stereoregular polymer was formed in the presence of 1 equiv of B(C6F5)3.

8.
Proc Natl Acad Sci U S A ; 111(32): E3252-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071207

RESUMO

Viral lethal mutagenesis is a strategy whereby the innate immune system or mutagenic pool nucleotides increase the error rate of viral replication above the error catastrophe limit. Lethal mutagenesis has been proposed as a mechanism for several antiviral compounds, including the drug candidate 5-aza-5,6-dihydro-2'-deoxycytidine (KP1212), which causes A-to-G and G-to-A mutations in the HIV genome, both in tissue culture and in HIV positive patients undergoing KP1212 monotherapy. This work explored the molecular mechanism(s) underlying the mutagenicity of KP1212, and specifically whether tautomerism, a previously proposed hypothesis, could explain the biological consequences of this nucleoside analog. Establishing tautomerism of nucleic acid bases under physiological conditions has been challenging because of the lack of sensitive methods. This study investigated tautomerism using an array of spectroscopic, theoretical, and chemical biology approaches. Variable temperature NMR and 2D infrared spectroscopic methods demonstrated that KP1212 existed as a broad ensemble of interconverting tautomers, among which enolic forms dominated. The mutagenic properties of KP1212 were determined empirically by in vitro and in vivo replication of a single-stranded vector containing a single KP1212. It was found that KP1212 paired with both A (10%) and G (90%), which is in accord with clinical observations. Moreover, this mutation frequency is sufficient for pushing a viral population over its error catastrophe limit, as observed before in cell culture studies. Finally, a model is proposed that correlates the mutagenicity of KP1212 with its tautomeric distribution in solution.


Assuntos
Fármacos Anti-HIV/farmacologia , Azacitidina/análogos & derivados , Desoxicitidina/análogos & derivados , HIV/efeitos dos fármacos , HIV/genética , Mutagênicos/farmacologia , Fármacos Anti-HIV/química , Azacitidina/química , Azacitidina/farmacologia , Bacteriófago M13/efeitos dos fármacos , Bacteriófago M13/genética , Bacteriófago M13/fisiologia , Pareamento de Bases , Desoxicitidina/química , Desoxicitidina/farmacologia , Genoma Viral/efeitos dos fármacos , HIV/fisiologia , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Químicos , Mutagênicos/química , Espectrofotometria Infravermelho , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
J Am Chem Soc ; 135(2): 640-3, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23281808

RESUMO

Photoalignment of nematic liquid crystals is demonstrated using a di-π-methane rearrangement of a designed polymer. The alignment mechanism makes use of the strong coupling of the liquid crystal directors to dibenzobarrelene groups. The large structural changes that accompany photoisomerization effectively passivate segments of the polymer, allowing the remaining dibenzobarrelene groups to dominate the director alignment. Photoisomerization requires triplet sensitization, and the polymer was designed to have a uniaxially fixed rigid structure and rapid triplet energy transfer from the proximate benzophenone units to the dibenzobarrelene groups. The isomerization was observed to be regiospecific, and thin films showed alignment.

10.
PLoS One ; 6(1): e15135, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21264288

RESUMO

The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first "mechanism validation" phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach.


Assuntos
Análise Mutacional de DNA , Genoma Viral/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Mutação , Nucleosídeos/farmacologia , Fármacos Anti-HIV , Genoma Viral/genética , Genótipo , Infecções por HIV/genética , Humanos , Nucleosídeos/administração & dosagem , Carga Viral/efeitos dos fármacos
11.
J Am Chem Soc ; 131(22): 7770-80, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19489647

RESUMO

Two diastereomers of the monoalkoxidepyrrolide (MAP) species, W(NAr)(CH(2))(Me(2)Pyr)(OR*) (1; Ar = 2,6-diisopropylphenyl, Me(2)Pyr = 2,5-dimethylpyrrolide, OR* = (R)-3,3'-dibromo-2'-(tert-butyldimethylsilyloxy)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-olate), were generated through addition of R*OH to W(NAr)(CH(2))(Me(2)Pyr)(2). The unsubstituted tungstacyclobutane species, W(NAr)(C(3)H(6))(Me(2)Pyr)(OR*) (2), was isolated by treating the mixture of diastereomers of 1 with ethylene. An X-ray study revealed 2 to have a trigonal bipyramidal structure in which the imido and phenoxide ligands are in axial positions. A variety of NMR experiments were carried out on 1 and 2. The major findings are the following: (i) the methylidene ligands in the two diastereomers of 1 rotate readily about the W horizontal lineC bond (k = 2-7 s(-1) at 22 degrees C); (ii) NMR studies are consistent with 2 breaking up to give an intermediate alkylidene/ethylene complex, (R)- and (S)-W(CH(2))(C(2)H(4)); and (iii) the ethylene in the (R)-W(CH(2))(C(2)H(4)) intermediate can rotate about the W-ethylene bond axis at approximately the same rate as 2 re-forms or ethylene is lost to give 1. Compound 1 reacts with trimethylphosphine to yield (R)-1(PMe(3)). Two intermediate PMe(3) adducts were observed and found to convert to (R)-1(PMe(3)) in an intramolecular fashion with an average rate constant at 5 degrees C of approximately 1.4 x 10(-4) s(-1). Both neophylidene (4) and methylidene (5) MAP species containing 2,3,5,6-tetraphenylphenoxide ligand also were prepared. Compound 5 can be heated to 80 degrees C, where methylidene rotation about the W=C bond is facile and observable in a variable-temperature (1)H NMR spectrum. A (1)H-(1)H EXSY spectrum of 5 in benzene-d(6) at 20 degrees C showed that the methylidene protons are exchanging with k = 90 s(-1). A structure of 5(THF) showed it to be a square pyramid with the methylidene ligand in the apical position and THF coordinated trans to the imido ligand. Exposure of 5 to ethylene generated the tungstacyclobutane complex, W(NAr)(C(3)H(6))(Me(2)Pyr)(OR) (6), whose structure is analogous to that of 2. Treatment of 5 with PMe(3) yielded yellow 5(PMe(3)), an X-ray study of which revealed it to be a square pyramid with the methylidene ligand in the apical position and the phosphine trans to the pyrrolide. These studies suggest that metallacyclobutane intermediates in metathesis reactions with MAP species are likely to contain axial imido and phenoxide ligands, that metallacycles are formed when an olefin approaches the metal in a MAP species trans to the pyrrolide, and that the configuration at the metal inverts as a consequence of each forward metathesis step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA