Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(3): 1944-1956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37702932

RESUMO

PURPOSE: To propose an automated approach for detecting and classifying Intracranial Hemorrhages (ICH) directly from sinograms using a deep learning framework. This method is proposed to overcome the limitations of the conventional diagnosis by eliminating the time-consuming reconstruction step and minimizing the potential noise and artifacts that can occur during the Computed Tomography (CT) reconstruction process. METHODS: This study proposes a two-stage automated approach for detecting and classifying ICH from sinograms using a deep learning framework. The first stage of the framework is Intensity Transformed Sinogram Sythesizer, which synthesizes sinograms that are equivalent to the intensity-transformed CT images. The second stage comprises of a cascaded Convolutional Neural Network-Recurrent Neural Network (CNN-RNN) model that detects and classifies hemorrhages from the synthesized sinograms. The CNN module extracts high-level features from each input sinogram, while the RNN module provides spatial correlation of the neighborhood regions in the sinograms. The proposed method was evaluated on a publicly available RSNA dataset consisting of a large sample size of 8652 patients. RESULTS: The results showed that the proposed method had a notable improvement as high as 27% in patient-wise accuracies when compared to state-of-the-art methods like ResNext-101, Inception-v3 and Vision Transformer. Furthermore, the sinogram-based approach was found to be more robust to noise and offset errors in comparison to CT image-based approaches. The proposed model was also subjected to a multi-label classification analysis to determine the hemorrhage type from a given sinogram. The learning patterns of the proposed model were also examined for explainability using the activation maps. CONCLUSION: The proposed sinogram-based approach can provide an accurate and efficient diagnosis of ICH without the need for the time-consuming reconstruction step and can potentially overcome the limitations of CT image-based approaches. The results show promising outcomes for the use of sinogram-based approaches in detecting hemorrhages, and further research can explore the potential of this approach in clinical settings.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Hemorragias Intracranianas/diagnóstico por imagem , Algoritmos
2.
Med Image Anal ; 88: 102865, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331241

RESUMO

Cranial implants are commonly used for surgical repair of craniectomy-induced skull defects. These implants are usually generated offline and may require days to weeks to be available. An automated implant design process combined with onsite manufacturing facilities can guarantee immediate implant availability and avoid secondary intervention. To address this need, the AutoImplant II challenge was organized in conjunction with MICCAI 2021, catering for the unmet clinical and computational requirements of automatic cranial implant design. The first edition of AutoImplant (AutoImplant I, 2020) demonstrated the general capabilities and effectiveness of data-driven approaches, including deep learning, for a skull shape completion task on synthetic defects. The second AutoImplant challenge (i.e., AutoImplant II, 2021) built upon the first by adding real clinical craniectomy cases as well as additional synthetic imaging data. The AutoImplant II challenge consisted of three tracks. Tracks 1 and 3 used skull images with synthetic defects to evaluate the ability of submitted approaches to generate implants that recreate the original skull shape. Track 3 consisted of the data from the first challenge (i.e., 100 cases for training, and 110 for evaluation), and Track 1 provided 570 training and 100 validation cases aimed at evaluating skull shape completion algorithms at diverse defect patterns. Track 2 also made progress over the first challenge by providing 11 clinically defective skulls and evaluating the submitted implant designs on these clinical cases. The submitted designs were evaluated quantitatively against imaging data from post-craniectomy as well as by an experienced neurosurgeon. Submissions to these challenge tasks made substantial progress in addressing issues such as generalizability, computational efficiency, data augmentation, and implant refinement. This paper serves as a comprehensive summary and comparison of the submissions to the AutoImplant II challenge. Codes and models are available at https://github.com/Jianningli/Autoimplant_II.


Assuntos
Próteses e Implantes , Crânio , Humanos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Craniotomia/métodos , Cabeça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA