Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 187, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168076

RESUMO

Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Compostos Orgânicos/análise , Solo/química , Carbono
2.
J Fish Biol ; 104(1): 240-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37799016

RESUMO

Green sturgeon (Acipenser medirostris) and white sturgeon (A. transmontanus) are closely related, sympatric species that inhabit the San Francisco estuary. Green sturgeon have a more marine life history but both species spawn in the Sacramento River and reside for some duration in San Francisco Bay. These sturgeons are of conservation concern, yet little is known about their dietary competition when they overlap in space and time. To examine evidence of dietary differentiation, we collected whole blood and blood plasma from 26 green sturgeon and 35 white sturgeon in San Francisco Bay. Using carbon and nitrogen stable isotope analyses, we compared their relative trophic levels and foraging locations along the freshwater to marine gradient. Sampling blood plasma and whole blood allowed comparison of dietary integration over shorter and longer time scales, respectively. Plasma and whole blood δ13 C values confirmed green sturgeon had more marine dietary sources than white sturgeon. Plasma δ15 N values revealed white sturgeon fed at lower trophic levels than green sturgeon recently, however, whole blood δ15 N values demonstrated the two species fed at the same trophic level over longer time scales. Larger individuals of both species had higher δ13 C values than smaller individuals, reflecting more marine food sources in adulthood. Length did not affect δ15 N values of either species. Isotope analyses supported the more marine life history of green than white sturgeon and potentially highlight a temporary trophic differentiation of diet between species during and preceding the overlapping life stage in San Francisco Bay.


Assuntos
Estuários , Peixes , Humanos , Animais , São Francisco , Dieta , Isótopos
3.
Front Ecol Environ ; 20(1): 49-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873359

RESUMO

Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.

4.
Sci Total Environ ; 828: 154452, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278569

RESUMO

In many regions of the world, large populations of native wildlife have declined or been replaced by livestock grazing areas and farmlands, with consequences for terrestrial-aquatic ecosystem connectivity and trophic resources supporting food webs in aquatic ecosystems. The river continuum concept (RCC) and the riverine productivity model (RPM) predict a shift of energy supplying aquatic food webs along rivers: from terrestrial inputs in low-order streams to autochthonous production in mid-sized rivers. In Afromontane-savanna landscapes, the shifting numbers of large mammalian wildlife present a physical continuum whose ecological implications for rivers is not clearly understood. Here, we studied the influence of replacing large wildlife (mainly hippos) with livestock on the fractional contribution of C3 vegetation, C4 grasses and periphyton on macroinvertebrates in the Mara River, which is an African montane-savanna river known to receive large subsidy fluxes of terrestrial organic matter and nutrients mediated by large mammalian herbivores (LMH), both wildlife and livestock, in its middle and lower reaches. Using stable carbon (δ13C) and nitrogen (δ15N) isotopes, we identified spatial patterns in the fractional contribution of allochthonous organic matter from C3 and C4 plants (woody vegetation and grasses, respectively) and autochthonous energy from periphyton for macroinvertebrates at various sites of the Mara River and its tributaries. Potential energy sources and invertebrates were sampled at 80 sites spanning stream orders 1 to 7, various catchment land uses (forest, agriculture and grasslands) and different loading rates of organic matter and nutrients by LMH (livestock and wildlife, i.e., hippopotamus). The fractional contribution of different sources of energy for macroinvertebrates along the river did not follow predictions of the RCC and RPM. First, the fractional contribution of C3 and C4 carbon was not related to river order or location along the fluvial continuum but to the loading of organic matter (dung) by both wildlife and livestock. Notably, C4 carbon was important for macroinvertebrates even in large river sections inhabited by hippos. Second, even in small 1st -3rd order forested streams, periphyton was a major source of energy for macroinvertebrates, and this was fostered by livestock inputs fuelling aquatic primary production throughout the river network. Importantly, our results show that replacing wildlife (hippos) with livestock shifts river systems towards greater reliance on autochthonous sources of energy through an algae-grazer pathway as opposed to reliance on allochthonous inputs of C4 carbon through a detrital pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Animais Selvagens/metabolismo , Carbono/metabolismo , Ecossistema , Feminino , Cadeia Alimentar , Herbivoria , Humanos , Gado , Masculino , Mamíferos/metabolismo , Plantas/metabolismo
5.
BMC Musculoskelet Disord ; 23(1): 72, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045839

RESUMO

BACKGROUND: In recent years, total hip arthroplasty via the direct anterior approach (DAA) has become more common. Little is known on the influence of the surgical approach on the microbiological spectrum and resistance pattern in periprosthetic hip joint infections. The aim of the present study was to evaluate the microbiological spectrum and resistance pattern in periprosthetic hip joint infections comparing the direct anterior versus lateral approach in a matched-cohort analysis at a single institution. METHODS: Patients who underwent revision hip arthroplasty due to PJI following primary total hip arthroplasty with culture positive microbiology were analyzed. In all study patients, both the primary surgery and the revisions surgery were performed at the same institution. Only patients in whom primary surgery was performed via a direct anterior or lateral approach were included (n = 87). A matched cohort analysis was performed to compare the microbiological spectrum and resistance pattern in PJI following direct anterior (n = 36) versus lateral (n = 36) primary THA. RESULTS: We identified both a significantly different microbiological spectrum and resistance pattern in PJI comparing direct anterior versus lateral approach THA. Cutibacterium avidum was obtained more frequently in the anterior subgroup (22.2% vs. 2.8%, p = 0.028). In the subgroup of infections with Staphylococcus aureus (n = 12), methicillin resistance was detected in 3/5 cases in the direct anterior group versus 0/7 cases in the lateral group (p = 0.045). Overall, Staphylococcus epidermidis was the most common causative microorganism in both groups (direct anterior: 36.1%; lateral: 27.8%, p = 0.448). CONCLUSION: The present study indicates a potential influence of the localization of the skin incision in THA on the microbiological spectrum and resistance pattern in PJI. Cutibacterium avidum seemed to be a more common causative microorganism in PJI in patients who underwent direct anterior compared to lateral approach THA.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Infecções Relacionadas à Prótese , Artroplastia de Quadril/efeitos adversos , Estudos de Coortes , Articulação do Quadril , Prótese de Quadril/efeitos adversos , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/epidemiologia , Reoperação , Estudos Retrospectivos , Fatores de Risco
6.
Sci Rep ; 11(1): 23478, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873189

RESUMO

Light pollution is an environmental stressor of global extent that is growing exponentially in area and intensity. Artificial skyglow, a form of light pollution with large range, is hypothesized to have environmental impact at ecosystem level. However, testing the impact of skyglow at large scales and in a controlled fashion under in situ conditions has remained elusive so far. Here we present the first experimental setup to mimic skyglow at ecosystem level outdoors in an aquatic environment. Spatially diffuse and homogeneous surface illumination that is adjustable between 0.01 and 10 lx, resembling rural to urban skyglow levels, was achieved with white light-emitting diodes at a large-scale lake enclosure facility. The illumination system was enabled by optical modeling with Monte-Carlo raytracing and validated by measurements. Our method can be adapted to other outdoor and indoor skyglow experiments, urgently needed to understand the impact of skyglow on ecosystems.

7.
PLoS One ; 16(9): e0257076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495982

RESUMO

Populations of large wildlife have declined in many landscapes around the world, and have been replaced or displaced by livestock. The consequences of these changes on the transfer of organic matter (OM) and nutrients from terrestrial to aquatic ecosystems are not well understood. We used behavioural data, excretion and egestion rates and C: N: P stoichiometry of dung and urine of zebu cattle, to develop a metabolism-based estimate of loading rates of OM (dung), C, N and P into the Mara River, Kenya. We also directly measured the deposition of OM and urine by cattle into the river during watering. Per head, zebu cattle excrete and/or egest 25.6 g dry matter (DM, 99.6 g wet mass; metabolism) - 27.7 g DM (direct input) of OM, 16.0-21.8 g C, 5.9-9.6 g N, and 0.3-0.5 g P per day into the river. To replace loading rates OM of an individual hippopotamus by cattle, around 100 individuals will be needed, but much less for different elements. In parts of the investigated sub-catchments loading rates by cattle were equivalent to or higher than that of the hippopotamus. The patterns of increased suspended materials and nutrients as a result of livestock activity fit into historical findings on nutrients concentrations, dissolved organic carbon and other variables in agricultural and livestock areas in the Mara River basin. Changing these patterns of carbon and nutrient transport and cycling are having significant effects on the structure and functioning of both terrestrial and aquatic ecosystems.


Assuntos
Pradaria , Gado/fisiologia , Nitrogênio/análise , Compostos Orgânicos/análise , Fósforo/análise , África , Animais , Comportamento Animal , Bovinos , Geografia , Sedimentos Geológicos/química , Rios/química , Qualidade da Água
8.
ACS ES T Water ; 1(7): 1648-1656, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278381

RESUMO

Wildfires produce large amounts of pyrogenic carbon (PyC), including charcoal, known for its chemical recalcitrance and sorption affinity for organic molecules. Wildfire-derived PyC can be transported to fluvial networks. Here it may alter the dissolved organic matter (DOM) concentration and composition as well as microbial biofilm functioning. Effects of PyC on carbon cycling in freshwater ecosystems remain poorly investigated. Employing in-stream flumes with a control versus treatment design (PyC pulse addition), we present evidence that field-aged PyC inputs to rivers can increase the dissolved organic carbon (DOC) concentration and alter the DOM composition. DOM fluorescence components were not affected by PyC. The in-stream DOM composition was altered due to leaching of pyrogenic DOM from PyC and possibly concurrent sorption of riverine DOM to PyC. Decreased DOM aromaticity indicated by a lower SUVA245 (-0.31 unit) and a higher pH (0.25 unit) was associated with changes in enzymatic activities in benthic biofilms, including a lower recalcitrance index (ß-glucosidase/phenol oxidase), suggesting preferential usage of recalcitrant over readily available DOM by biofilms. The deposition of particulate PyC onto biofilms may further modulate the impacts of PyC due to direct contact with the biofilm matrix. This study highlights the importance of PyC for in-stream biogeochemical organic matter cycling in fire-affected watersheds.

9.
WIREs Water ; 7(5)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33365126

RESUMO

Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.

10.
Proc Biol Sci ; 287(1926): 20193000, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345142

RESUMO

In many regions of the world, populations of large wildlife have been displaced by livestock, and this may change the functioning of aquatic ecosystems owing to significant differences in the quantity and quality of their dung. We developed a model for estimating loading rates of organic matter (dung) by cattle for comparison with estimated rates for hippopotamus in the Mara River, Kenya. We then conducted a replicated mesocosm experiment to measure ecosystem effects of nutrient and carbon inputs associated with dung from livestock (cattle) versus large wildlife (hippopotamus). Our loading model shows that per capita dung input by cattle is lower than for hippos, but total dung inputs by cattle constitute a significant portion of loading from large herbivores owing to the large numbers of cattle on the landscape. Cattle dung transfers higher amounts of limiting nutrients, major ions and dissolved organic carbon to aquatic ecosystems relative to hippo dung, and gross primary production and microbial biomass were higher in cattle dung treatments than in hippo dung treatments. Our results demonstrate that different forms of animal dung may influence aquatic ecosystems in fundamentally different ways when introduced into aquatic ecosystems as a terrestrially derived resource subsidy.


Assuntos
Artiodáctilos/fisiologia , Bovinos , Ecossistema , Animais , Biomassa , Herbivoria , Quênia , Gado/fisiologia , Recursos Naturais , Rios
11.
Anal Chem ; 92(10): 6832-6838, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298576

RESUMO

Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, Institute for Chemistry and Biology of the Marine Environment, Oldenburg-complex molecular mixtures, evaluation & analysis) that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulas. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with the help of isotopologues. The online tool and the detailed instruction manual are freely accessible at www.icbm.de/icbm-ocean.

12.
Anal Chem ; 92(3): 2558-2565, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887024

RESUMO

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost.

13.
Glob Chang Biol ; 25(12): 4234-4243, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31411780

RESUMO

Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conducive to high rates of methane (CH4 ) production and emission, suggesting a potentially important role in the global CH4 cycle. However, there is a lack of comprehensive flux data from diverse urban water bodies, of information on the underlying drivers, and of estimates for whole cities. Based on measurements over four seasons in a total of 32 water bodies in the city of Berlin, Germany, we calculate the total CH4 emission from various types of surface waters of a large city in temperate climate at 2.6 ± 1.7 Gg CH4 /year. The average total emission was 219 ± 490 mg CH4  m-2  day-1 . Water chemical variables were surprisingly poor predictors of total CH4 emissions, and proxies of productivity and oxygen conditions had low explanatory power as well, suggesting a complex combination of factors governing CH4 fluxes from urban surface waters. However, small water bodies (area <1 ha) typically located in urban green spaces were identified as emission hotspots. These results help constrain assessments of CH4 emissions from freshwaters in the world's growing cities, facilitating extrapolation of urban emissions to large areas, including at the global scale.


Assuntos
Ecossistema , Metano , Dióxido de Carbono , Cidades , Água Doce , Alemanha , Estações do Ano
14.
Environ Sci Technol ; 53(8): 4224-4234, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30905154

RESUMO

The fate of 28 trace organic compounds (TrOCs) was investigated in the hyporheic zone (HZ) of an urban lowland river in Berlin, Germany. Water samples were collected hourly over 17 h in the river and in three depths in the HZ using minipoint samplers. The four relatively variable time series were subsequently used to calculate first-order removal rates and retardation coefficients via a one-dimensional reactive transport model. Reversible sorption processes led to substantial retardation of many TrOCs along the investigated hyporheic flow path. Some TrOCs, such as dihydroxy-carbamazepine, O-desmethylvenlafaxine, and venlafaxine, were found to be stable in the HZ. Others were readily removed with half-lives in the first 10 cm of the HZ ranging from 0.1 ± 0.01 h for iopromide to 3.3 ± 0.3 h for tramadol. Removal rate constants of the majority of reactive TrOCs were highest in the first 10 cm of the HZ, where removal of biodegradable dissolved organic matter was also the highest. Because conditions were oxic along the top 30 cm of the investigated flow path, we attribute this finding to the high microbial activity typically associated with the shallow HZ. Frequent and short vertical hyporheic exchange flows could therefore be more important for reach-scale TrOC removal than long, lateral hyporheic flow paths.


Assuntos
Carbono , Rios , Berlim , Alemanha , Compostos Orgânicos
15.
Front Microbiol ; 9: 2794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519221

RESUMO

Non-flow periods in fluvial ecosystems are a global phenomenon. Streambed drying and rewetting by sporadic rainfalls could drive considerable changes in the microbial communities that govern stream nitrogen (N) availability at different temporal and spatial scales. We performed a microcosm-based experiment to investigate how dry period duration (DPD) (0, 3, 6, and 9 weeks) and magnitude of sporadic rewetting by rainfall (0, 4, and 21 mm applied at end of dry period) affected stocks of N in riverbed sediments, ammonia-oxidizing bacteria (AOB) and archaea (AOA) and rates of ammonia oxidation (AO), and emissions of nitrous oxide (N2O) to the atmosphere. While ammonium (NH4 +) pool size decreased, nitrate (NO3 -) pool size increased in sediments with progressive drying. Concomitantly, the relative and absolute abundance of AOB and, especially, AOA (assessed by 16S rRNA gene sequencing and quantitative PCR of ammonia monooxygenase genes) increased, despite an apparent decrease of AO rates with drying. An increase of N2O emissions occurred at early drying before substantially dropping until the end of the experiment. Strong rainfall of 21 mm increased AO rates and NH4 + in sediments, whereas modest rainfall of 4 mm triggered a notable increase of N2O fluxes. Interestingly, such responses were detected only after 6 and 9 weeks of drying. Our results demonstrate that progressive drying drives considerable changes in in-stream N cycling and the associated nitrifying microbial communities, and that sporadic rainfall can modulate these effects. Our findings are particularly relevant for N processing and transport in rivers with alternating dry and wet phases - a hydrological scenario expected to become more important in the future.

16.
PLoS One ; 13(7): e0199327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975719

RESUMO

The rapid erosion of biodiversity is among the biggest challenges human society is facing. Concurrently, major efforts are in place to quantify changes in biodiversity, to understand the consequences for ecosystem functioning and human wellbeing, and to develop sustainable management strategies. Based on comprehensive bibliometric analyses covering 134,321 publications, we report systematic spatial biases in biodiversity-related research. Research is dominated by wealthy countries, while major research deficits occur in regions with disproportionately high biodiversity as well as a high share of threatened species. Similarly, core scientists, who were assessed through their publication impact, work primarily in North America and Europe. Though they mainly exchange and collaborate across locations of these two continents, the connectivity among them has increased with time. Finally, biodiversity-related research has primarily focused on terrestrial systems, plants, and the species level, and is frequently conducted in Europe and Asia by researchers affiliated with European and North American institutions. The distinct spatial imbalances in biodiversity research, as demonstrated here, must be filled, research capacity built, particularly in the Global South, and spatially-explicit biodiversity data bases improved, curated and shared.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Ásia , Mudança Climática , Espécies em Perigo de Extinção/tendências , Europa (Continente) , Humanos , América do Norte
17.
Microbiome ; 5(1): 126, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938908

RESUMO

BACKGROUND: Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown. RESULTS: We performed a multifaceted analysis of microbiota and DOM diversity in 12 natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than 10 species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM. CONCLUSIONS: The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.


Assuntos
Bactérias/isolamento & purificação , Água Potável , Microbiota , Águas Minerais/microbiologia , Compostos Orgânicos/análise , Microbiologia da Água , Bactérias/classificação , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Biodiversidade , Água Potável/química , Água Potável/microbiologia , Europa (Continente) , Espectrometria de Massas , Microbiota/genética , Águas Minerais/análise , Compostos Orgânicos/química , RNA Ribossômico 16S
18.
Environ Sci Pollut Res Int ; 24(32): 25166-25178, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28924692

RESUMO

Urban surface waters face several stressors associated with industry and urban water management. Over much of the past century, the wastewater treatment in Berlin, Germany, relied on inefficient sewage farms, which resulted in severe eutrophication and sediment contamination in the recipient surface waterbodies. A prominent example is Lake Tegel, where a multitude of management measures were applied in the last decades for the purpose of ecosystem restoration. In this study, we analyzed sediment cores of three lakes with X-ray fluorescence spectroscopy: Lake Tegel, Lake Großer Wannsee, which is environmentally similar but has a different management history, and Lake Userin, which serves as a reference located in a nature protection area. Multivariate statistical methods (principal component analysis, k-means clustering, and self-organizing maps) were used to assess the sediment quality and to reconstruct the management history of Lake Tegel. Principal component analysis established two main gradients of sediment composition: heavy metals and lithogenic elements. The impact of the management measures was visualized in the lake sediment composition changing from high abundance of heavy metals and reducing redox conditions to less-impacted sediments in recent layers. The clustering techniques suggested heterogeneity among sites within Lake Tegel that probably reflect urban water management measures. The abundance of heavy metals in recent lake sediments of Lake Tegel is similar to a lake with low urban impact and is lower than in Lake Großer Wannsee suggesting that the management measures were successful in the reduction of heavy metals, which are still a threat for surface waters worldwide.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Águas Residuárias , Purificação da Água , Berlim , Eutrofização , Sedimentos Geológicos/análise , Alemanha , Lagos/análise , Metais Pesados/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise
20.
Limnol Oceanogr ; 61(Suppl 1): S175-S187, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27881883

RESUMO

River-floodplain systems are characterized by changing hydrological connectivity and variability of resources delivered to floodplain water bodies. Although the importance of hydrological events has been recognized, the effect of flooding on CH4 concentrations and emissions from European, human-impacted river-floodplains is largely unknown. This study evaluates aquatic concentrations and emissions of CH4 from a highly modified, yet partly restored river-floodplain system of the Danube near Vienna (Austria). We covered a broad range of hydrological conditions, including a 1-yr flood event in 2012 and a 100-yr flood in 2013. Our findings demonstrate that river-floodplain waters were supersaturated with CH4, hence always serving as a source of CH4 to the atmosphere. Hydrologically isolated habitats in general have higher concentrations and produce higher fluxes despite lower physically defined velocities. During surface connection, however, CH4 is exported from the floodplain to the river, suggesting that the main channel serves as an "exhaust pipe" for the floodplain. This mechanism was especially important during the 100-yr flood, when a clear pulse of CH4 was flushed from the floodplain with surface floodwaters. Our results emphasize the importance of floods differing in magnitude for methane evasion from river-floodplains; 34% more CH4 was emitted from the entire system during the year with the 100-yr flood compared to a hydrologically "normal" year. Compared to the main river channel, semiisolated floodplain waters were particularly strong sources of CH4. Our findings also imply that the predicted increased frequency of extreme flooding events will have significant consequences for methane emission from river-floodplain systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA