Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23478, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873189

RESUMO

Light pollution is an environmental stressor of global extent that is growing exponentially in area and intensity. Artificial skyglow, a form of light pollution with large range, is hypothesized to have environmental impact at ecosystem level. However, testing the impact of skyglow at large scales and in a controlled fashion under in situ conditions has remained elusive so far. Here we present the first experimental setup to mimic skyglow at ecosystem level outdoors in an aquatic environment. Spatially diffuse and homogeneous surface illumination that is adjustable between 0.01 and 10 lx, resembling rural to urban skyglow levels, was achieved with white light-emitting diodes at a large-scale lake enclosure facility. The illumination system was enabled by optical modeling with Monte-Carlo raytracing and validated by measurements. Our method can be adapted to other outdoor and indoor skyglow experiments, urgently needed to understand the impact of skyglow on ecosystems.

2.
PLoS One ; 16(9): e0257076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495982

RESUMO

Populations of large wildlife have declined in many landscapes around the world, and have been replaced or displaced by livestock. The consequences of these changes on the transfer of organic matter (OM) and nutrients from terrestrial to aquatic ecosystems are not well understood. We used behavioural data, excretion and egestion rates and C: N: P stoichiometry of dung and urine of zebu cattle, to develop a metabolism-based estimate of loading rates of OM (dung), C, N and P into the Mara River, Kenya. We also directly measured the deposition of OM and urine by cattle into the river during watering. Per head, zebu cattle excrete and/or egest 25.6 g dry matter (DM, 99.6 g wet mass; metabolism) - 27.7 g DM (direct input) of OM, 16.0-21.8 g C, 5.9-9.6 g N, and 0.3-0.5 g P per day into the river. To replace loading rates OM of an individual hippopotamus by cattle, around 100 individuals will be needed, but much less for different elements. In parts of the investigated sub-catchments loading rates by cattle were equivalent to or higher than that of the hippopotamus. The patterns of increased suspended materials and nutrients as a result of livestock activity fit into historical findings on nutrients concentrations, dissolved organic carbon and other variables in agricultural and livestock areas in the Mara River basin. Changing these patterns of carbon and nutrient transport and cycling are having significant effects on the structure and functioning of both terrestrial and aquatic ecosystems.


Assuntos
Pradaria , Gado/fisiologia , Nitrogênio/análise , Compostos Orgânicos/análise , Fósforo/análise , África , Animais , Comportamento Animal , Bovinos , Geografia , Sedimentos Geológicos/química , Rios/química , Qualidade da Água
3.
Proc Biol Sci ; 287(1926): 20193000, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345142

RESUMO

In many regions of the world, populations of large wildlife have been displaced by livestock, and this may change the functioning of aquatic ecosystems owing to significant differences in the quantity and quality of their dung. We developed a model for estimating loading rates of organic matter (dung) by cattle for comparison with estimated rates for hippopotamus in the Mara River, Kenya. We then conducted a replicated mesocosm experiment to measure ecosystem effects of nutrient and carbon inputs associated with dung from livestock (cattle) versus large wildlife (hippopotamus). Our loading model shows that per capita dung input by cattle is lower than for hippos, but total dung inputs by cattle constitute a significant portion of loading from large herbivores owing to the large numbers of cattle on the landscape. Cattle dung transfers higher amounts of limiting nutrients, major ions and dissolved organic carbon to aquatic ecosystems relative to hippo dung, and gross primary production and microbial biomass were higher in cattle dung treatments than in hippo dung treatments. Our results demonstrate that different forms of animal dung may influence aquatic ecosystems in fundamentally different ways when introduced into aquatic ecosystems as a terrestrially derived resource subsidy.


Assuntos
Artiodáctilos/fisiologia , Bovinos , Ecossistema , Animais , Biomassa , Herbivoria , Quênia , Gado/fisiologia , Recursos Naturais , Rios
4.
Glob Chang Biol ; 25(12): 4234-4243, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31411780

RESUMO

Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conducive to high rates of methane (CH4 ) production and emission, suggesting a potentially important role in the global CH4 cycle. However, there is a lack of comprehensive flux data from diverse urban water bodies, of information on the underlying drivers, and of estimates for whole cities. Based on measurements over four seasons in a total of 32 water bodies in the city of Berlin, Germany, we calculate the total CH4 emission from various types of surface waters of a large city in temperate climate at 2.6 ± 1.7 Gg CH4 /year. The average total emission was 219 ± 490 mg CH4  m-2  day-1 . Water chemical variables were surprisingly poor predictors of total CH4 emissions, and proxies of productivity and oxygen conditions had low explanatory power as well, suggesting a complex combination of factors governing CH4 fluxes from urban surface waters. However, small water bodies (area <1 ha) typically located in urban green spaces were identified as emission hotspots. These results help constrain assessments of CH4 emissions from freshwaters in the world's growing cities, facilitating extrapolation of urban emissions to large areas, including at the global scale.


Assuntos
Ecossistema , Metano , Dióxido de Carbono , Cidades , Água Doce , Alemanha , Estações do Ano
5.
Microbiome ; 5(1): 126, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938908

RESUMO

BACKGROUND: Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown. RESULTS: We performed a multifaceted analysis of microbiota and DOM diversity in 12 natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than 10 species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM. CONCLUSIONS: The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.


Assuntos
Bactérias/isolamento & purificação , Água Potável , Microbiota , Águas Minerais/microbiologia , Compostos Orgânicos/análise , Microbiologia da Água , Bactérias/classificação , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Biodiversidade , Água Potável/química , Água Potável/microbiologia , Europa (Continente) , Espectrometria de Massas , Microbiota/genética , Águas Minerais/análise , Compostos Orgânicos/química , RNA Ribossômico 16S
6.
Proc Natl Acad Sci U S A ; 111(35): 12799-804, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136087

RESUMO

Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity.


Assuntos
Biofilmes/crescimento & desenvolvimento , Ecossistema , Hidrologia/métodos , Microbiota/fisiologia , Modelos Estatísticos , Rios/microbiologia , Biodiversidade , Biomassa , Meio Ambiente , RNA Ribossômico 16S/fisiologia
7.
Sci Rep ; 4: 4981, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24828296

RESUMO

Streams receive substantial terrestrial deliveries of dissolved organic matter (DOM). The chromophoric (CDOM) fraction of terrestrial deliveries confers the brown colour to streamwater, often understood as browning, and plays a central role in aquatic photochemistry and is generally considered resistant to microbial metabolism. To assess the relevance of terrigenous DOM for carbon fluxes mediated by stream microorganisms, we determined the bioavailable fraction of DOM and microbial carbon use efficiency (CUE), and related these measures to partial pressure of CO2 in headwater streams spanning across a browning gradient. Fluorescence and absorbance analyses revealed high molecular weight and aromaticity, and elevated contributions from humic-like components to characterize terrestrial CDOM. We found that microorganisms metabolized this material at the cost of low CUE and shifted its composition (from fluorescence and absorbance) towards less aromatic and low-molecular weight compounds. Respiration (from CUE) was related to CO2 supersaturation in streams and this relationship was modulated by DOM composition. Our findings imply that terrigenous DOM is respired by microorganisms rather than incorporated into their biomass, and that this channelizes terrigenous carbon to the pool of CO2 potentially outgassing from streams into the atmosphere. This finding may gain relevance as major terrigenous carbon stores become mobilized and browning progresses.


Assuntos
Carbono/metabolismo , Água Doce/microbiologia , Rios/microbiologia , Biomassa , Dióxido de Carbono/metabolismo , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/metabolismo
8.
Environ Microbiol ; 16(8): 2514-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24428193

RESUMO

Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.


Assuntos
Bactérias/classificação , Camada de Gelo/microbiologia , Filogenia , Microbiologia da Água , Bactérias/genética , Biodiversidade , Biofilmes/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
9.
ISME J ; 7(8): 1651-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23486246

RESUMO

While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, ß diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Camada de Gelo , Rios/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Biofilmes , Meio Ambiente , RNA Ribossômico 16S/genética
10.
ISME J ; 5(2): 196-208, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20703314

RESUMO

Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.


Assuntos
Biomassa , Chlamydiales/química , Pectobacterium carotovorum/química , Análise Espectral Raman , Carboidratos/análise , Chlamydiales/crescimento & desenvolvimento , Análise Discriminante , Substâncias Macromoleculares/química , Ácidos Nucleicos/análise , Pectobacterium carotovorum/crescimento & desenvolvimento , Análise de Componente Principal , Proteínas/análise
11.
Ecol Appl ; 17(2): 376-89, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17489246

RESUMO

Urbanization is dramatically changing nutrient and organic matter regimes in streams, yet the community and ecosystem implications often remain obscure. We assessed the consequences of sewage-derived particulate organic matter (SDPOM) for invertebrate community structure and function in a headwater stream. Using stable isotope analyses, we found assimilation of organic SDPOM to double community secondary production, and stoichiometric analyses revealed SDPOM enriched in phosphorus (P) to foster putatively fast-growing, P-rich consumers in the subsidized reach. This altered consumer-resource stoichiometry impacted both community structure and nutrient fluxes through the invertebrate community. Community structure shifted toward significantly reduced diversity and evenness in the subsidized reach and consequently toward shorter food chains. Our integration of ecological stoichiometry with stable isotope analyses and food web ecology expands the previous focus of traditional ecotoxicology and ecophysiology to an ecosystem-level appreciation of pollutant ecology.


Assuntos
Biodiversidade , Cadeia Alimentar , Rios , Poluentes da Água , Animais , Biomassa , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Invertebrados/fisiologia , Esgotos , Fatores de Tempo , Urbanização , Poluição Química da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA