Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453833

RESUMO

A strategy for activating azabicyclo[1.1.0]butane (ABB) with in situ generated aza-ortho-quinone methide, promoted by HFIP, is reported. This unified activation, vis-à-vis strain-release-driven N/C3-functionalization, features a new means to prepare functionalized azetidines from ABB. Additionally, the newly installed motif on azetidine nitrogen could be forged into an indoline via Pd-catalyzed hydroamination, leveraging access to medicinally relevant scaffolds.

2.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253478

RESUMO

Rationale: Low density cholesterol receptor (LDLR) in the liver is critical for the clearance of low-density lipoprotein cholesterol (LDL-C) in the blood. In atherogenic conditions, proprotein convertase subtilisin/kexin 9 (PCSK9) secreted by the liver, in a nonenzymatic fashion, binds to LDLR on the surface of hepatocytes, preventing its recycling and enhancing its degradation in lysosomes, resulting in reduced LDL-C clearance. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution of circulating LDL-C to atherosclerosis, we hypothesize that liver epsins promote atherosclerosis by controlling LDLR endocytosis and degradation. Objective: We will determine the role of liver epsins in promoting PCSK9-mediated LDLR degradation and hindering LDL-C clearance to propel atherosclerosis. Methods and Results: We generated double knockout mice in which both paralogs of epsins, namely, epsin-1 and epsin-2, are specifically deleted in the liver (Liver-DKO) on an ApoE -/- background. We discovered that western diet (WD)-induced atherogenesis was greatly inhibited, along with diminished blood cholesterol and triglyceride levels. Mechanistically, using scRNA-seq analysis on cells isolated from the livers of ApoE-/- and ApoE-/- /Liver-DKO mice on WD, we found lipogenic Alb hi hepatocytes to glycogenic HNF4α hi hepatocytes transition in ApoE-/- /Liver-DKO. Subsequently, gene ontology analysis of hepatocyte-derived data revealed elevated pathways involved in LDL particle clearance and very-low-density lipoprotein (VLDL) particle clearance under WD treatment in ApoE-/- /Liver-DKO, which was coupled with diminished plasma LDL-C levels. Further analysis using the MEBOCOST algorithm revealed enhanced communication score between LDLR and cholesterol, suggesting elevated LDL-C clearance in the ApoE-/- Liver-DKO mice. In addition, we showed that loss of epsins in the liver upregulates of LDLR protein level. We further showed that epsins bind LDLR via the ubiquitin-interacting motif (UIM), and PCSK9-triggered LDLR degradation was abolished by depletion of epsins, preventing atheroma progression. Finally, our therapeutic strategy, which involved targeting liver epsins with nanoparticle-encapsulated siRNAs, was highly efficacious at inhibiting dyslipidemia and impeding atherosclerosis. Conclusions: Liver epsins promote atherogenesis by mediating PCSK9-triggered degradation of LDLR, thus raising the circulating LDL-C levels. Targeting epsins in the liver may serve as a novel therapeutic strategy to treat atherosclerosis by suppression of PCSK9-mediated LDLR degradation.

3.
bioRxiv ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39282400

RESUMO

Background: Protein-tyrosine-phosphatase CD45 is exclusively expressed in all nucleated cells of the hematopoietic system but is rarely expressed in endothelial cells. Interestingly, our recent study indicated that activation of the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) induced expression of multiple EndoMT marker genes. However, the detailed molecular mechanisms underlying CD45 that drive EndoMT and the therapeutic potential of manipulation of CD45 expression in atherosclerosis are entirely unknown. Method: We generated a tamoxifen-inducible EC-specific CD45 deficient mouse strain (EC-iCD45KO) in an ApoE-deficient (ApoE-/-) background and fed with a Western diet (C57BL/6) for atherosclerosis and molecular analyses. We isolated and enriched mouse aortic endothelial cells with CD31 beads to perform single-cell RNA sequencing. Biomedical, cellular, and molecular approaches were utilized to investigate the role of endothelial CD45-specific deletion in the prevention of EndoMT in ApoE-/- model of atherosclerosis. Results: Single-cell RNA sequencing revealed that loss of endothelial CD45 inhibits EndoMT marker expression and transforming growth factor-ß signaling in atherosclerotic mice. which is associated with the reductions of lesions in the ApoE-/- mouse model. Mechanistically, the loss of endothelial cell CD45 results in increased KLF2 expression, which inhibits transforming growth factor-ß signaling and EndoMT. Consistently, endothelial CD45 deficient mice showed reduced lesion development, plaque macrophages, and expression of cell adhesion molecules when compared to ApoE-/- controls. Conclusions: These findings demonstrate that the loss of endothelial CD45 protects against EndoMT-driven atherosclerosis, promoting KLF2 expression while inhibiting TGFß signaling and EndoMT markers. Thus, targeting endothelial CD45 may be a novel therapeutic strategy for EndoMT and atherosclerosis.

4.
bioRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39131381

RESUMO

Smooth muscle cells in major arteries play a crucial role in regulating coronary artery disease. Conversion of smooth muscle cells into other adverse cell types in the artery propels the pathogenesis of the disease. Curtailing artery plaque buildup by modulating smooth muscle cell reprograming presents us a new opportunity to thwart coronary artery disease. Here, our report how Epsins, a family of endocytic adaptor proteins oversee the smooth muscle cell reprograming by influencing master regulators OCT4 and KLF4. Using single-cell RNA sequencing, we characterized the phenotype of modulated smooth muscle cells in mouse atherosclerotic plaque and found that smooth muscle cells lacking epsins undergo profound reprogramming into not only beneficial myofibroblasts but also endothelial cells for injury repair of diseased endothelium. Our work lays concrete groundwork to explore an uncharted territory as we show that depleting Epsins bolsters smooth muscle cells reprograming to endothelial cells by augmenting OCT4 activity but restrain them from reprograming to harmful foam cells by destabilizing KLF4, a master regulator of adverse reprograming of smooth muscle cells. Moreover, the expression of Epsins in smooth muscle cells positively correlates with the severity of both human and mouse coronary artery disease. Integrating our scRNA-seq data with human Genome-Wide Association Studies (GWAS) identifies pivotal roles Epsins play in smooth muscle cells in the pathological process leading to coronary artery disease. Our findings reveal a previously unexplored direction for smooth muscle cell phenotypic modulation in the development and progression of coronary artery disease and unveil Epsins and their downstream new targets as promising novel therapeutic targets for mitigating metabolic disorders.

6.
Vascul Pharmacol ; 155: 107368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548093

RESUMO

Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais , Transdução de Sinais , Humanos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Aterosclerose/genética , Animais , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Placa Aterosclerótica , Fenótipo
7.
Vascul Pharmacol ; 154: 107249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070759

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.


Assuntos
Aterosclerose , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Cirrose Hepática , Fibrose , Biomarcadores , Aterosclerose/patologia , Fígado/patologia
8.
Angew Chem Int Ed Engl ; 62(30): e202304471, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37243932

RESUMO

Access to 1,3-functionalized azetidines through a diversity-oriented approach is highly sought-after for finding new applications in drug-discovery. To this goal, strain-release-driven functionalization of azabicyclo[1.1.0]-butane (ABB) has generated significant interest. Through appropriate N-activation, C3-substituted ABBs are shown to render tandem N/C3-fucntionalization/rearrangement, furnishing azetidines; although, modalities of such N-activation vis-à-vis N-functionalization remain limited to selected electrophiles. This work showcases a versatile cation-driven activation strategy of ABBs. And capitalizes on the use of Csp3 precursors amenable to forming reactive (aza)oxyallyl cations in situ. Herein, N-activation leads to formation of a congested C-N bond, and effective C3 activation. The concept was extended to formal [3+2] annulations involving (aza)oxyallyl cations and ABBs, leading to bridged bicyclic azetidines. Besides the fundamental appeal of this new activation paradigm, operational simplicity and remarkable diversity should engender its prompt use in synthetic and medicinal chemistry.

10.
Front Cardiovasc Med ; 9: 1031293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247464

RESUMO

The efficient phagocytic clearance of dying cells and apoptotic cells is one of the processes that is essential for the maintenance of physiologic tissue function and homeostasis, which is termed "efferocytosis." Under normal conditions, "find me" and "eat me" signals are released by apoptotic cells to stimulate the engulfment and efferocytosis of apoptotic cells. In contrast, abnormal efferocytosis is related to chronic and non-resolving inflammatory diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion development, monocyte-derived macrophages display efficient efferocytosis that restricts plaque progression; however, this capacity is reduced in more advanced lesions. Macrophage reprogramming as a result of the accumulation of apoptotic cells and augmented inflammation accounts for this diminishment of efferocytosis. Furthermore, defective efferocytosis plays an important role in necrotic core formation, which triggers plaque rupture and acute thrombotic cardiovascular events. Recent publications have focused on the essential role of macrophage efferocytosis in cardiac pathophysiology and have pointed toward new therapeutic strategies to modulate macrophage efferocytosis for cardiac tissue repair. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis in vascular cells, including macrophages and other phagocytic cells and detail how efferocytosis-related molecules contribute to the maintenance of vascular hemostasis and how defective efferocytosis leads to the formation and progression of atherosclerotic plaques.

11.
Blood ; 140(25): 2722-2729, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998675

RESUMO

Heparin-induced thrombocytopenia (HIT) is suspected much more often than it is confirmed. Technically simple platelet factor 4 (PF4)-polyanion enzyme-linked immunosorbent assays (ELISAs) are sensitive but nonspecific. In contrast, accurate functional tests such as the serotonin release assay, heparin-induced platelet activation assay, and PF4-dependent P-selectin expression assay require fresh platelets and have complex assay end points, limiting their availability to specialized reference laboratories. To enable broad deployment of functional testing, we sought to extend platelet viability significantly by optimizing storage conditions and developed a simple functional assay end point by measuring the release of a platelet α-granule protein, thrombospondin-1 (TSP1), in an ELISA format. Platelet cryopreservation conditions were optimized by freezing platelets at controlled cooling rates that preserve activatability. Several-month-old cryopreserved platelets were treated with PF4 or heparin and were evaluated for their ability to be activated by HIT and vaccine-induced immune thrombotic thrombocytopenia (VITT) antibodies in the TSP1 release assay (TRA). HIT and spontaneous HIT patient samples induced significantly higher TSP1 release using both PF4-treated (PF4-TRA) and heparin-treated cryopreserved platelets relative to samples from patients suspected of HIT who lacked platelet-activating antibodies. This latter group included several patients that tested strongly positive in PF4-polyanion ELISA but were not platelet-activating. Four VITT patient samples tested in the TRA activated PF4-treated, but not heparin-treated, cryopreserved platelets, consistent with recent data suggesting the requirement for PF4-treated platelets for VITT antibody detection. These findings have the potential to transform the testing paradigm in HIT and VITT, making decentralized, technically simple functional testing available for rapid and accurate in-hospital diagnosis.


Assuntos
Anticorpos , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Anticorpos/análise , Anticoagulantes/efeitos adversos , Criopreservação , Heparina/efeitos adversos , Fator Plaquetário 4 , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/diagnóstico , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Vacinas/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Plaquetas
12.
Chemistry ; 28(62): e202201208, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35943863

RESUMO

Herein, development and detailed investigation of a SN '-type intramolecular aromatic substitution reaction involving α-arylazaoxyallyl cation intermediate, is disclosed. The study showcased that while α-aryl-α-chlorohydroxamate could be activated by a combination of base and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) into the corresponding azaoxyallyl cations, it could further emerge into a π-extended species involving the adjacent α-aryl moiety, and this transition is contingent on electronic effects of the aromatic ring as well as on α-substituents. An effective activation of the α-aromatic ring could pave the path for intramolecular Ar(Csp2 )-N bond formation towards oxindoles. Control experiments and DFT calculations suggested that a non-pericyclic nucleophilic amination pathway is most likely operative and precluded the possibility of concerted or electrophilic amination mechanism. HFIP as the reaction solvent plays pivotal roles in the transformation.


Assuntos
Aminação , Oxindóis , Cátions
13.
Chem Commun (Camb) ; 58(54): 7538-7541, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35703384

RESUMO

Herein, a transition metal-free approach for access to 3,3'-disubstituted peroxyoxindole is disclosed, which harnesses a transient azaoxyallyl cation. This strategy is also applicable to the synthesis of structurally diverse α-peroxycarboxylic acid surrogates. The method exhibits good functional group tolerance and is suitable for generating a library of peroxy-containing compounds.


Assuntos
Peróxido de Hidrogênio , Cátions
15.
Am J Hematol ; 97(5): 519-526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132672

RESUMO

Rare cases of COVID-19 vaccinated individuals develop anti-platelet factor 4 (PF4) antibodies that cause thrombocytopenia and thrombotic complications, a syndrome referred to as vaccine-induced immune thrombotic thrombocytopenia (VITT). Currently, information on the characteristics and persistence of anti-PF4 antibodies that cause VITT after Ad26.COV2.S vaccination is limited, and available diagnostic assays fail to differentiate Ad26.COV2.S and ChAdOx1 nCoV-19-associated VITT from similar clinical disorders, namely heparin-induced thrombocytopenia (HIT) and spontaneous HIT. Here we demonstrate that while Ad26.COV2.S-associated VITT patients are uniformly strongly positive in PF4-polyanion enzyme-linked immunosorbent assays (ELISAs); they are frequently negative in the serotonin release assay (SRA). The PF4-dependent p-selectin expression assay (PEA) that uses platelets treated with PF4 rather than heparin consistently diagnosed Ad26.COV2.S-associated VITT. Most Ad26.COV2.S-associated VITT antibodies persisted for >5 months in PF4-polyanion ELISAs, while the PEA became negative earlier. Two patients had otherwise unexplained mild persistent thrombocytopenia (140-150 x 103 /µL) 6 months after acute presentation. From an epidemiological perspective, differentiating VITT from spontaneous HIT, another entity that develops in the absence of proximate heparin exposure, and HIT is important, but currently available PF4-polyanion ELISAs and functional assay are non-specific and detect all three conditions. Here, we report that a novel un-complexed PF4 ELISA specifically differentiates VITT, secondary to both Ad26.COV2.S and ChAdOx1 nCoV-19, from both spontaneous HIT, HIT and commonly-encountered HIT-suspected patients who are PF4/polyanion ELISA-positive but negative in functional assays. In summary, Ad26.COV2.S-associated VITT antibodies are persistent, and the un-complexed PF4 ELISA appears to be both sensitive and specific for VITT diagnosis.


Assuntos
COVID-19 , Trombocitopenia , Vacinas , Ad26COVS1 , COVID-19/diagnóstico , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Heparina/efeitos adversos , Humanos , Fator Plaquetário 4 , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico
17.
Front Cell Dev Biol ; 9: 687598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222255

RESUMO

Small GTPase Rap1 plays a prominent role in endothelial cell (EC) homeostasis by promoting NO release. Endothelial deletion of the two highly homologous Rap1 isoforms, Rap1A and Rap1B, leads to endothelial dysfunction ex vivo and hypertension in vivo. Mechanistically, we showed that Rap1B promotes NO release in response to shear flow by promoting mechanosensing complex formation involving VEGFR2 and Akt activation. However, the specific contribution of the Rap1A isoform to NO release and the underlying molecular mechanisms through which the two Rap1 isoforms control endothelial function are unknown. Here, we demonstrate that endothelial dysfunction resulting from knockout of both Rap1A and Rap1B isoforms is ameliorated by exogenous L-Arg administration to rescue NO-dependent vasorelaxation and blood pressure. We confirmed that Rap1B is rapidly activated in response to agonists that trigger eNOS activation, and its deletion in ECs attenuates eNOS activation, as detected by decreased Ser1177 phosphorylation. Somewhat surprising was the finding that EC deletion of Rap1A does not lead to impaired agonist-induced vasorelaxation ex vivo. Mechanistically, the deletion of Rap1A led to elevated eNOS phosphorylation both at the inhibitory, T495, and the activating Ser1177 residues. These findings indicate that the two Rap1 isoforms act via distinct signaling pathways: while Rap1B directly positively regulates eNOS activation, Rap1A prevents negative regulation of eNOS. Notably, the combined deficiency of Rap1A and Rap1B has a severe effect on eNOS activity and NO release with an in vivo impact on endothelial function and vascular homeostasis.

18.
Arterioscler Thromb Vasc Biol ; 41(2): 638-650, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267664

RESUMO

OBJECTIVE: Small GTPase Rap1 (Ras-association proximate 1) is a novel, positive regulator of NO release and endothelial function with a potentially key role in mechanosensing of atheroprotective, laminar flow. Our objective was to delineate the role of Rap1 in the progression of atherosclerosis and its specific functions in the presence and absence of laminar flow, to better define its role in endothelial mechanisms contributing to plaque formation and atherogenesis. Approach and Results: In a mouse atherosclerosis model, endothelial Rap1B deletion exacerbates atherosclerotic plaque formation. In the thoracic aorta, where laminar shear stress-induced NO is otherwise atheroprotective, plaque area is increased in Athero-Rap1BiΔEC (atherogenic endothelial cell-specific, tamoxifen-inducible Rap1A+Rap1B knockout) mice. Endothelial Rap1 deficiency also leads to increased plaque size, leukocyte accumulation, and increased CAM (cell adhesion molecule) expression in atheroprone areas, whereas vascular permeability is unchanged. In endothelial cells, in the absence of protective laminar flow, Rap1 deficiency leads to an increased proinflammatory TNF-α (tumor necrosis factor alpha) signaling and increased NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and elevated inflammatory receptor expression. Interestingly, this increased signaling to NF-κB activation is corrected by AKTVIII-an inhibitor of Akt (protein kinase B) translocation to the membrane. Together, these data implicate Rap1 in restricting Akt-dependent signaling, preventing excessive cytokine receptor signaling and proinflammatory NF-κB activation. CONCLUSIONS: Via 2 distinct mechanisms, endothelial Rap1 protects from the atherosclerosis progression in the presence and absence of laminar flow; Rap1-stimulated NO release predominates in laminar flow, and restriction of proinflammatory signaling predominates in the absence of laminar flow. Our studies provide novel insights into the mechanisms underlying endothelial homeostasis and reveal the importance of Rap1 signaling in cardiovascular disease.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Placa Aterosclerótica , Transdução de Sinais , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
19.
J Org Chem ; 84(23): 15255-15266, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31702149

RESUMO

A new [3 + 3]- and [3 + 4]-annulation strategy involving azaoxyallyl cation and [1,m]-amphoteric compounds (m = 3,4) is presented. This concise method enables easy assembly of functionalized saturated N-heterocycles, comprised of six-and seven-membered rings and is of high significance in the context of drug discovery approaches. This reaction also represents a new trapping modality of the azaoxyallyl cation with amphoteric agents of different chain lengths that consist of a heteroatom nucleophilic site and a π-electrophilic site.

20.
Eur J Immunol ; 46(10): 2388-2400, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480067

RESUMO

Increased plasma level of von Willebrand Factor (vWF) is associated with major cardiovascular diseases. We previously reported that multimeric vWF binds to NO synthase and inhibits insulin-induced production of NO, thus promoting insulin resistance during acute hypoxia (AH). However, the transcriptional regulation of vWF during AH is not clearly understood. Here, we investigated the mechanisms underlying the upregulation of vwf in mice. AH significantly upregulates the tlr2, tlr3, myd88, and vwf expression and phosphorylation of specificity protein 1 (SP1). Furthermore, AH significantly upregulates high mobility group box-1 (HMGB1) in a time-dependent manner. Moreover, a TLR2 agonist upregulates vWF but a TLR3 agonist does not. Pretreatment with an HMGB1 inhibitor, TLR2-immunoneutralizing antibody, or SP1 inhibitor significantly inhibits vWF expression. Furthermore, Tlr2 silencing completely inhibited MYD88, vWF expression, and SP1 phosphorylation. However, pretreatment with glycyrrhizic acid or silencing of Tlr2 completely blocks binding of Sp1 to the Vwf promoter, thus inhibiting its expression, and enhances insulin resistance during AH. Patients with type 2 diabetes mellitus also showed significantly elevated levels of HMGB1, TLR2, SP1, and vWF, thereby supporting the results of the murine model of AH. Taken together, HMGB1 upregulates vWF in vivo through the TLR2-MYD88-SP1 pathway in mice.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Proteína HMGB1/metabolismo , Hipóxia/imunologia , Fator de von Willebrand/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Células Cultivadas , Diabetes Mellitus Tipo 2/terapia , Ácido Glicirrízico/farmacologia , Proteína HMGB1/genética , Humanos , Hipóxia/terapia , Imunoglobulinas/metabolismo , Resistência à Insulina , Camundongos , Terapia de Alvo Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA