Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2943, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580637

RESUMO

Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.


Assuntos
Brassica rapa , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Estresse Fisiológico , Brassica rapa/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico
2.
ACS Omega ; 9(4): 4166-4185, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313515

RESUMO

Carbon dots (CDs) have drawn attention due to their enticing physical, chemical, and surface properties. Besides, good conductivity, low toxicity, environmental friendliness, simple synthetic routes, and comparable optical properties are advantageous features of CDs. Further, recently, CDs have been explored for biological systems, including plants. Among biological systems, only plants form the basis for sustainability and life on Earth. In this Review, we reviewed suitable properties and applications of CDs, such as promoting the growth of agricultural plants, disease resistance, stress tolerance, and target transportation. Summing up the available studies, we believe that the applications of CDs are yet to be explored significantly for innovation and technology-based agriculture.

3.
J Am Chem Soc ; 145(22): 12155-12163, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230942

RESUMO

Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.


Assuntos
Disciplinas das Ciências Biológicas , Estruturas Metalorgânicas , Biotecnologia , Polímeros , Ácido Abscísico
4.
ACS Nano ; 17(9): 8333-8344, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37104566

RESUMO

The AgriFood systems in tropical climates are under strain due to a rapid increase in human population and extreme environmental conditions that limit the efficacy of packaging technologies to extend food shelf life and guarantee food safety. To address these challenges, we rationally designed biodegradable packaging materials that sense spoilage and prevent molding. We nanofabricated the interface of 2D covalent organic frameworks (COFs) to reinforce silk fibroin (SF) and obtain biodegradable membranes with augmented mechanical properties and that displayed an immediate colorimetric response (within 1 s) to food spoilage, using packaged poultry as an example. Loading COF with antimicrobial hexanal also mitigated biotic spoilage in high-temperature and -humidity conditions, resulting in a four-order of magnitude decrease in the total amount of mold growth in soybeans packaged in silk-COF, when compared to cling film (i.e., polyethylene). Together, the integration of sensing, structural reinforcement, and antimicrobial agent delivery within a biodegradable nanocomposite framework defines climate-specific packaging materials that can decrease food waste and enhance food safety.


Assuntos
Anti-Infecciosos , Eliminação de Resíduos , Humanos , Alimentos , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Anti-Infecciosos/química
5.
Nano Lett ; 23(3): 916-924, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36651830

RESUMO

Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.


Assuntos
Arabidopsis , Nanotubos de Carbono , Giberelinas/química , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Nanotubos de Carbono/química , Fluorescência , Corantes
6.
J Math Biol ; 86(1): 11, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478092

RESUMO

Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H2O2 followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction-diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.


Assuntos
Peróxido de Hidrogênio , Estresse Mecânico
7.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36004808

RESUMO

Entamoeba histolytica (E. histolytica) is an anaerobic parasite that causes Amoebiasis in the intestine or extraintestinal, with immunology, genetics, and environmental variables all playing a part in the disease's development, but its molecular mechanism is unknown. One of the primary obstacles in understanding the etiology of Amoebiasis will be identifying the genetics profiling that controls the Amoebiasis network. By examining the gene expression profile of Amoebiasis and comparing it with healthy controls, we could identify differentially expressed genes (DEGs). DEGs were used to build the Amoebiasis protein interaction network and calculated its network topological properties. We discovered nine key hub genes (KHGs): JUN, PTGS2, FCGR3A, MNDA, CYBB, EGR1, CCL2, TLR8, and LRRK2 genes. The genes JUN and EGR1 were transcriptional factors (TFs) and up-regulated, others down-regulated. hsa-miR-155-5p, hsa-miR-101-3p, hsa-miR-124-3p, hsa-miR-26b-5p, and hsa-miR-16-5p are also among the essential miRNAs that have been demonstrated to be targeted by KHGs. These KHGs were primarily enriched in the IL-17 signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway. miRNAs were grouped in various pathways, focusing on the TGF-ß signaling pathway, human immunodeficiency virus 1 infection, insulin signaling pathway, signaling pathways regulating pluripotency of stem cells, etc. Amoebiasis KHGs (JUN, PTGS2, CCL2, and MNDA) and their associated miRNAs are the primary targets for therapeutic methods and possible biomarkers. Furthermore, we identified drugs for genes JUN, PTGS2, FCGR3A, CCL2, and LRRK2. KHGs, on the other hand, required experimental validation to prove their efficacy.


Assuntos
Amebíase , Entamoeba histolytica , Insulinas , MicroRNAs , Humanos , Entamoeba histolytica/genética , Redes Reguladoras de Genes , Metanálise em Rede , Ciclo-Oxigenase 2/genética , Interleucina-17/genética , Receptor 8 Toll-Like/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Biomarcadores , Proteínas NLR , Insulinas/genética , Fator de Crescimento Transformador beta/genética
8.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743277

RESUMO

Vibrational spectroscopy techniques are widely used in analytical chemistry, physics and biology. The most prominent techniques are Raman and Fourier-transform infrared spectroscopy (FTIR). Combining both techniques delivers complementary information of the test sample. We present the design, construction, and calibration of a novel bimodal spectroscopy system featuring both Raman and infrared measurements simultaneously on the same sample without mutual interference. The optomechanical design provides a modular flexible system for solid and liquid samples and different configurations for Raman. As a novel feature, the Raman module can be operated off-axis for optical sectioning. The calibrated system demonstrates high sensitivity, precision, and resolution for simultaneous operation of both techniques and shows excellent calibration curves with coefficients of determination greater than 0.96. We demonstrate the ability to simultaneously measure Raman and infrared spectra of complex biological material using bovine serum albumin. The performance competes with commercial systems; moreover, it presents the additional advantage of simultaneously operating Raman and infrared techniques. To the best of our knowledge, it is the first demonstration of a combined Raman-infrared system that can analyze the same sample volume and obtain optically sectioned Raman signals. Additionally, quantitative comparison of confocality of backscattering micro-Raman and off-axis Raman was performed for the first time.


Assuntos
Análise Espectral Raman , Vibração , Calibragem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
9.
ACS Sens ; 6(8): 3032-3046, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34375072

RESUMO

Synthetic auxins such as 1-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) have been extensively used in plant tissue cultures and as herbicides because they are chemically more stable and potent than most endogenous auxins. A tool for rapid in planta detection of these compounds will enhance our knowledge about hormone distribution and signaling and facilitate more efficient usage of synthetic auxins in agriculture. In this work, we show the development of real-time and nondestructive in planta NAA and 2,4-D nanosensors based on the concept of corona phase molecular recognition (CoPhMoRe), to replace the current state-of-the-art sensing methods that are destructive and laborious. By designing a library of cationic polymers wrapped around single-walled carbon nanotubes with general affinity for chemical moieties displayed on auxins and its derivatives, we developed selective sensors for these synthetic auxins, with a particularly large quenching response to NAA (46%) and a turn-on response to 2,4-D (51%). The NAA and 2,4-D nanosensors are demonstrated in planta across several plant species including spinach, Arabidopsis thaliana (A. thaliana), Brassica rapa subsp. chinensis (pak choi), and Oryza sativa (rice) grown in various media, including soil, hydroponic, and plant tissue culture media. After 5 h of 2,4-D supplementation to the hydroponic medium, 2,4-D is seen to accumulate in susceptible dicotyledon pak choi leaves, while no uptake is observed in tolerant monocotyledon rice leaves. As such, the 2,4-D nanosensor had demonstrated its capability for rapid testing of herbicide susceptibility and could help elucidate the mechanisms of 2,4-D transport and the basis for herbicide resistance in crops. The success of the CoPhMoRe technique for measuring these challenging plant hormones holds tremendous potential to advance the plant biology study.


Assuntos
Arabidopsis , Herbicidas , Nanotubos de Carbono , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas
10.
Front Bioeng Biotechnol ; 9: 624885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681160

RESUMO

Polyhydroxyalkanoates (PHAs) are the biopolymer of choice if we look for a substitute of petroleum-based non-biodegradable plastics. Microbial production of PHAs as carbon reserves has been studied for decades and PHAs are gaining attention for a wide range of applications in various fields. Still, their uneconomical production is the major concern largely attributed to high cost of organic substrates for PHA producing heterotrophic bacteria. Therefore, microalgae/cyanobacteria, being photoautotrophic, prove to have an edge over heterotrophic bacteria. They have minimal metabolic requirements, such as inorganic nutrients (CO2, N, P, etc.) and light, and they can survive under adverse environmental conditions. PHA production under photoautotrophic conditions has been reported from cyanobacteria, the only candidate among prokaryotes, and few of the eukaryotic microalgae. However, an efficient cultivation system is still required for photoautotrophic PHA production to overcome the limitations associated with (1) stringent management of closed photobioreactors and (2) optimization of monoculture in open pond culture. Thus, a hybrid system is a necessity, involving the participation of microalgae/cyanobacteria and bacteria, i.e., both photoautotrophic and heterotrophic components having mutual interactive benefits for each other under different cultivation regime, e.g., mixotrophic, successive two modules, consortium based, etc. Along with this, further strategies like optimization of culture conditions (N, P, light exposure, CO2 dynamics, etc.), bioengineering, efficient downstream processes, and the application of mathematical/network modeling of metabolic pathways to improve PHA production are the key areas discussed here. Conclusively, this review aims to critically analyze cyanobacteria as PHA producers and proposes economically sustainable production of PHA from microbial autotrophs and heterotrophs in "hybrid biological system."

11.
Sci Rep ; 10(1): 20206, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214575

RESUMO

Precision agriculture requires new technologies for rapid diagnosis of plant stresses, such as nutrient deficiency and drought, before the onset of visible symptoms and subsequent yield loss. Here, we demonstrate a portable Raman probe that clips around a leaf for rapid, in vivo spectral analysis of plant metabolites including carotenoids and nitrates. We use the leaf-clip Raman sensor for early diagnosis of nitrogen deficiency of the model plant Arabidopsis thaliana as well as two important vegetable crops, Pak Choi (Brassica rapa chinensis) and Choy Sum (Brassica rapa var. parachinensis). In vivo measurements using the portable leaf-clip Raman sensor under full-light growth conditions were consistent with those obtained with a benchtop Raman spectrometer measurements on leaf-sections under laboratory conditions. The portable leaf-clip Raman sensor offers farmers and plant scientists a new precision agriculture tool for early diagnosis and real-time monitoring of plant stresses in field conditions.


Assuntos
Arabidopsis/metabolismo , Brassica rapa/metabolismo , Produtos Agrícolas/metabolismo , Folhas de Planta/metabolismo , Análise Espectral Raman/instrumentação , Estresse Fisiológico/fisiologia , Proteínas de Plantas/metabolismo
12.
Plant Methods ; 16: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117429

RESUMO

BACKGROUND: Shade avoidance syndrome (SAS) commonly occurs in plants experiencing vegetative shade, causing morphological and physiological changes that are detrimental to plant health and consequently crop yield. As the effects of SAS on plants are irreversible, early detection of SAS in plants is critical for sustainable agriculture. However, conventional methods to assess SAS are restricted to observing for morphological changes and checking the expression of shade-induced genes after homogenization of plant tissues, which makes it difficult to detect SAS early. RESULTS: Using the model plant Arabidopsis thaliana, we introduced the use of Raman spectroscopy to measure shade-induced changes of metabolites in vivo. Raman spectroscopy detected a decrease in carotenoid contents in leaf blades and petioles of plants with SAS, which were induced by low Red:Far-red light ratio or high density conditions. Moreover, by measuring the carotenoid Raman peaks, we were able to show that the reduction in carotenoid content under shade was mediated by phytochrome signaling. Carotenoid Raman peaks showed more remarkable response to SAS in petioles than leaf blades of plants, which greatly corresponded to their morphological response under shade or high plant density. Most importantly, carotenoid content decreased shortly after shade induction but before the occurrence of visible morphological changes. We demonstrated this finding to be similar in other plant species. Comprehensive testing of Brassica vegetables showed that carotenoid content decreased during SAS, in both shade and high density conditions. Likewise, carotenoid content responded quickly to shade, in a manner similar to Arabidopsis plants. CONCLUSIONS: In various plant species tested in this study, quantification of carotenoid Raman peaks correlate to the severity of SAS. Moreover, short-term exposure to shade can induce the carotenoid Raman peaks to decrease. These findings highlight the carotenoid Raman peaks as a biomarker for early diagnosis of SAS in plants.

13.
Front Plant Sci ; 11: 663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582235

RESUMO

Nutrient deficiency alters growth and development of crop plants and compromises yield. Real-time non-invasive monitoring of the nutritional status of crops would allow timely applications of fertilizers to optimize for growth and yield at different times of the plant's life cycle. Here, we used Raman spectroscopy to characterize Arabidopsis and two varieties of leafy vegetable crops under nitrogen sufficient and deficient conditions. We showed that the 1046 cm-1 Raman peak serves as a specific signature of nitrogen status in planta, which can be used for early diagnosis of nitrogen deficiency in plants before onset of any visible symptoms. Our research can be applied toward crop management for sustainable and precision agriculture.

14.
Anal Bioanal Chem ; 404(10): 3091-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23052868

RESUMO

In recent years, Raman spectroscopy has shown substantive promise in diagnosing bladder cancer, especially due to its exquisite molecular specificity. The ability to reduce false detection rates in comparison to existing diagnostic tools such as photodynamic diagnosis makes Raman spectroscopy particularly attractive as a complementary diagnostic tool for real-time guidance of transurethral resection of bladder tumor (TURBT). Nevertheless, the state-of-the-art high-volume Raman spectroscopic probes have not reached the expected levels of specificity thereby impeding their clinical translation. To address this issue, we propose the use of a confocal Raman probe for bladder cancer diagnosis that can boost the specificity of the diagnostic algorithm based on its suppression of the out-of-focus non-analyte-specific signals emanating from the neighboring normal tissue. In this article, we engineer and apply such a probe, having depth of field of approximately 280 µm, for Raman spectral acquisition from ex vivo normal and cancerous TURBT samples. Using this clinical dataset, a diagnostic algorithm based on principal component analysis and logistic regression is developed. We demonstrate that this approach results in comparable sensitivity but significantly higher specificity in relation to high-volume Raman spectral data. The application of only two principal components is sufficient for the discrimination of the samples underlining the robustness of the algorithm. Further, no discordance between replicate spectra is observed emphasizing the reproducible nature of the current diagnostic assessment. The high levels of sensitivity and specificity achieved in this proof-of-concept study opens substantive avenues for application of a confocal Raman probe during endoscopic procedures related to diagnosis and treatment of bladder cancer.


Assuntos
Análise Espectral Raman/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Bexiga Urinária/patologia , Humanos , Sensibilidade e Especificidade
15.
Anal Chem ; 84(19): 8149-56, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22950485

RESUMO

Over the past decade, optical spectroscopy has been employed in combination with multivariate chemometric models to investigate a wide variety of diseases and pathological conditions, primarily due to its excellent chemical specificity and lack of sample preparation requirements. Despite promising results in several proof-of-concept studies, its translation to the clinical setting has often been hindered by inadequate accuracy of the conventional spectroscopic models. To address this issue and the possibility of curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture spectra (due to fluctuations in sample and environmental conditions), support vector machine-based least-squares nonlinear regression (LS-SVR) has been recently proposed. In this paper, we investigate the robustness of this methodology to noise-induced instabilities and present an analytical formula for estimating modeling precision as a function of measurement noise and model parameters. This formalism can be readily used to evaluate uncertainty in information extracted from spectroscopic measurements, particularly important for rapid-acquisition biomedical applications. Subsequently, using field data (Raman spectra) acquired from a glucose clamping study on an animal model subject, we perform the first systematic investigation of the relative effect of additive interference components (namely, noise in prediction spectra, calibration spectra, and calibration concentrations) on the prediction error of nonlinear spectroscopic models. Our results show that the LS-SVR method gives more accurate results and is substantially more robust to additive noise when compared with conventional regression methods such as partial least-squares regression (PLS), when careful selection of the LS-SVR model parameters are performed. We anticipate that these results will be useful for uncertainty estimation in similar biomedical applications where the precision of measurements and its response to noise in the data set is as important, if not more so, than the generic accuracy level.


Assuntos
Glicemia/análise , Animais , Cães , Análise dos Mínimos Quadrados , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA