Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998620

RESUMO

According to the WHO (World Health Organization), lung cancer is the leading cause of cancer deaths globally. In the future, more than 2.2 million people will be diagnosed with lung cancer worldwide, making up 11.4% of every primary cause of cancer. Furthermore, lung cancer is expected to be the biggest driver of cancer-related mortality worldwide in 2020, with an estimated 1.8 million fatalities. Statistics on lung cancer rates are not uniform among geographic areas, demographic subgroups, or age groups. The chance of an effective treatment outcome and the likelihood of patient survival can be greatly improved with the early identification of lung cancer. Lung cancer identification in medical pictures like CT scans and MRIs is an area where deep learning (DL) algorithms have shown a lot of potential. This study uses the Hybridized Faster R-CNN (HFRCNN) to identify lung cancer at an early stage. Among the numerous uses for which faster R-CNN has been put to good use is identifying critical entities in medical imagery, such as MRIs and CT scans. Many research investigations in recent years have examined the use of various techniques to detect lung nodules (possible indicators of lung cancer) in scanned images, which may help in the early identification of lung cancer. One such model is HFRCNN, a two-stage, region-based entity detector. It begins by generating a collection of proposed regions, which are subsequently classified and refined with the aid of a convolutional neural network (CNN). A distinct dataset is used in the model's training process, producing valuable outcomes. More than a 97% detection accuracy was achieved with the suggested model, making it far more accurate than several previously announced methods.

2.
Prep Biochem Biotechnol ; 52(3): 331-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34283005

RESUMO

L-DOPA, a precursor of dopamine, is the drug of choice for Parkinson's disease, which persists due to decreased levels of dopamine in the brain. Present study emphasis the microbial production of L-DOPA rather than the biotransformation of L-DOPA by L-tyrosine. The production of L-DOPA by bacterial isolates had gained more acceptance due to its more straightforward extraction and downstream processes. Pseudomonas fluorescens was used to produce the L-DOPA in a bioreactor system under submerged condition. The design of experiment-based Taguchi orthogonal array method was adopted for the optimization of production. L-9 orthogonal array using the analysis of mean approach was used to study the effect of different factors viz NaCl, lactose, tryptone, and inducer on the microbial production of L-DOPA. The method mentioned above is less time consuming and does not require any harsh chemicals, proving it to be an eco-friendly process. After optimizing selected factors, i.e., NaCl (1.2 g/l), lactose (1.5 g/l), tryptone (4 g/l), and inducer (0.1 g/l), 16.9 % of enhancement in L-DOPA production with 66.6% of process cost saving was observed. The production of L-DOPA was increased from 3.426 ± 0.08 g/l to 4.123 ± 0.05 g/l after optimization. Subsequently, unstructured kinetic models were adopted to simulate the fermentation kinetics and understand the metabolic process. Fisher' F test and determination coefficients (R2) confirmed that the Velhurst-Pearl logistic equation, Luedeking-Piret equation, and modified Luedeking-Piret equation was best fitted with the biomass production, product formation, and substrate utilization, respectively.


Assuntos
Antiparkinsonianos/metabolismo , Levodopa/metabolismo , Modelos Biológicos , Pró-Fármacos/metabolismo , Pseudomonas fluorescens/metabolismo , Biotransformação , Cinética , Lactose/química , Cloreto de Sódio/química , Tirosina/metabolismo
3.
3 Biotech ; 11(12): 494, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881157

RESUMO

Camellia sinensis (green tea leaves) which acts as a reducing agent was used for the reduction of graphene oxide (GO) to obtain reduced graphene oxide (RGO). Anionic surfactant SDS was used to enhance the stability of synthesized reduced graphene oxide nanoparticles. Characterized reduced graphene oxide nanoparticle grain size was calculated to be 3.92 nm from the X-ray diffraction method, whereas zeta potential was measured - 35.23 ± 5.45 mV at room temperature. Antioxidant and cell cytotoxicity against A-549 lung carcinoma cells were also studied. Phytochemical content of Camellia sinensis imparts feasible DPPH activity of 85.98 ± 2.49% against RGO, whereas ABTS scavenging activity was found to be 88.87 ± 1.74% followed by measurement of the total phenolic content of 842 ± 13.33 µg/gm. RGO at concentration 400 µg/ml showed an optimum level of hemolysis at pH 7.4 (4.92 ± 1.20%) than pH 5.6 (11.15 ± 0.03%). Cytotoxicity activity studied by MTT assay of RGO on A-549 lung carcinomas cells was compared with drug doxorubicin. The bandgap energy of RGO was calculated to be 3.97 eV from absorption data, hence reveals the generation of oxidative stress in the A-549 lung cancer cell line. Thus, the surfactant and phytochemicals found in Camellia sinensis enhanced the stability of RGO, thereby providing enough energy to destabilize the target cells without affecting healthy cells, hence suggests its role in therapeutics application. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03015-z.

4.
Environ Technol ; 42(23): 3663-3674, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32114960

RESUMO

Bioflocculant-producing bacteria were isolated from various water reservoirs and sediments of the water treatment plant. Four promising strains were identified by standard biochemical methods and 16s rRNA gene sequencing. Bioflocculants were produced in a batch bioreactor of 3 L under optimized conditions. Fourier transformed infrared spectroscopy and scanning electron microscopy (SEM) were used to confirm the chemical and morphological nature of bioflocculants. Anionic and cationic textile dyes congo red (CR) and rhodamine-B (RB) decolourization efficiency by ethanol precipitated bioflocculants were accessed under different values of pH, temperature, dose of flocculant and presence of monovalent, divalent and trivalent cations. Bioflocculants of all the four isolates were found to be highly efficient in decolourization of dye from an aqueous medium with the removal rate up to 99.56%. The removal rate of CR and RB from aqueous medium was largely influenced by the physiochemical condition of the solution viz. pH, temperature, concentration of ions and dose of flocculants. The microbial bioflocculants are biodegradable and highly stable as well as possess abroad range of pH, temperature and ions tolerance range. So, they may be economical and can be greener substitutes for the present harsh chemical-based wastewater effluent treatment methods.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bactérias/genética , Cátions , Corantes , RNA Ribossômico 16S/genética , Têxteis , Poluentes Químicos da Água/análise
5.
J Biomater Sci Polym Ed ; 32(5): 563-580, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33187453

RESUMO

Polymer science offers a great insight and a new research dimension for biomedical applications. The synthesis of polymeric materials by the physical ways provides several advantages over the conventional chemical methods. It is though expansive but less toxic, stable, and efficiently reproducible. In the present report, electrospinning was used for bio-composite preparation. The bio-composite was developed using polyvinyl alcohol (PVA) and curcumin. The electrospun fiber bio-composite were analyzed for antibacterial activity, bacterial filtration capability, and endotoxin elimination. The bio-composite was analyzed for physical structure and properties using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and Fourier Transform Infra-Red spectroscopy (FT-IR). PVA solely was not able to exhibit any of the antibacterial or endotoxin removal properties. However, the curcumin-based bio-composite was found to be bactericidal and endotoxin eliminator. The bio-composite was able to remove 100% of endotoxin and nearly 100% of the bacterial cells. The endotoxin removal properties of bio-composite were found to be excellent fit under Langmuir curve with a R2 value of 0.98. Additionally, the effect of bio-composite was also studied over protein content in the sample and L-asparaginase activity. However, the effect observed was negligible.


Assuntos
Curcumina , Curcumina/farmacologia , Endotoxinas , Polímeros , Álcool de Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Prep Biochem Biotechnol ; 50(8): 803-813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163010

RESUMO

Several soil isolates from 1 g of soil sample were isolated and screened for the production of L-asparaginase. Primary screening was performed using rapid plate assay; dye indicator studies were conducted, and phenol red with 0.005% concentration was found to be optimum. The secondary screening was carried out using the Nesslerization method. The bacteria screened for L-asparaginase production with no glutaminase activity was identified as Bacillus subtilis. Crude L-asparaginase enzyme was partially purified 1.57 folds of purity and 110 U/mg of specific activity. The glutaminase-free L-asparaginase activity was also confirmed using LC-MS analysis. The presence of mass peaks at 147.0 in the reaction mixture suggested an absence of glutaminase activity. An optimized medium obtained comprised of Dextrose 1.5 g/L, K2HPO4 1.2 g/L, L-asparagine 15 g/L, and Tryptone 5 g/L. The highest L-asparaginase activity was observed at 6.0 pH and 30 °C. Kinetic parameters associated with biomass and L-asparaginase production were also studied. The computed values were µm 0.104 h-1, Xm 6g/L P0 1.7U/mL Pm 8.2 U/mL YX/S 4 g-cell/g-glucose µPm 0.35 h-1 qp 5.46 U/g/h YP/x 13.6667 U/g-cell. The novel bacterial isolates showed promise as a potential glutaminase-free L-asparaginase producer, which can prove to be of industrial applications.


Assuntos
Asparaginase/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/isolamento & purificação , Microbiologia do Solo , Bacillus subtilis/metabolismo , Corantes , Glutaminase/metabolismo , Indicadores e Reagentes , Cinética , Fenolsulfonaftaleína
7.
Prep Biochem Biotechnol ; 50(3): 260-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31762381

RESUMO

Anti-leukemic enzyme L-asparaginase despite having significant applicability in medicine, holds side effects attributed to glutaminase activity and endotoxin content. Glutaminase activity proves to be toxic to non-tumor cells as glutamine is an essential amino acid. Endotoxin illicit the production of vasoactive amines and induce septic shock. Hence there is a need for glutaminase free L-asparaginase with minimum endotoxin level. The report aims at the development of a downstream process for purification of glutaminase free L-asparaginase and subsequent endotoxin removal. Producing bacteria were isolated from various soil samples and screened initially for asparaginase and glutaminase activity. The glutaminase free L-asparaginase producing bacteria were identified as Bacillus altitudinis. Production of L-asparaginase was optimized. The optimum medium comprised of comprising Lactose (1.5 g/L), NaCl (1.2 g/L), Yeast extract (5 g/L), L-asparagine (20 g/L) with pH 7.0 and incubation time of 18 h. Kinetic parameters Km and Vmax were computed to be 9.09x10-2M and 0.09 M/S. L-asparaginase Purification was achieved with a specific activity of 800 U/mg of enzyme. Molecular weight of the purified L-asparaginase was determined to be around 35 KDa using SDS-PAGE. The developed process also brought down the endotoxin content below the FDA recommended level. The endotoxin content of the purified enzyme was determined to be 0.015EU/mL.


Assuntos
Antineoplásicos , Asparaginase , Bacillus/enzimologia , Endotoxinas/análise , Microbiologia do Solo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Asparaginase/química , Asparaginase/isolamento & purificação
8.
Indian J Orthop ; 48(5): 488-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25298556

RESUMO

BACKGROUND: Femoral fractures are common in children between 2 and 12 years of age and 75% of the lesions affect the femoral shaft. Traction followed by a plaster cast is universally accepted as conservative treatment. We compared primary hip spica with closed reduction and fixation with retrogradely passed crossed Rush pins for diaphyseal femur fracture in children. The hypothesis was that Rush pin might provide better treatment with good clinical results in comparison with primary hip spica. MATERIALS AND METHODS: Fifty children with femoral fractures were evaluated; 25 of them underwent conservative treatment using immediate hip spica (group A) and 25 were treated with crossed retrograde Rush pins (group B). The patients ages ranged from 3 to 13 years (mean of 9 years). RESULTS: Mean duration of fracture union was 15 weeks in group A and 12 weeks in group B. Mean duration of weight bearing 14 weeks in group and 7 weeks in group B. Mean hospital stay was 4 days in group A and 8 days in group B. Mean followup period in group A was 16 months and group B was 17 months. Complications such as angulation, shortening, infection were compared. CONCLUSIONS: Closed reduction and internal fixation with crossed Rush pins was superior in terms of early weight bearing and restoration of normal anatomy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA