Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Orthop Trauma ; 50: 102359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38370426

RESUMO

The incidence of tubercular tenosynovitis around the foot and ankle is rare even in endemic areas. We present an unusual case involving the isolated tubercular tenosynovitis of the Anterior Tibial tendon, which was successfully managed through a combination of medical treatment and endoscopic intervention. Our patient, a 30-year-old female, sought medical attention due to a gradually worsening painful swelling localized to the anterior aspect of her left ankle. Diagnostic imaging, specifically Magnetic Resonance Imaging (MRI), revealed alterations in signal intensity within the Anterior Tibial tendon. Importantly, the infection had not spread to involve the ankle joint. We performed both diagnostic and therapeutic tenosynovectomy endoscopically and subsequently sent the tissue for histopathological examination. The histopathological findings revealed the presence of histiocytic granulomas containing Langhans' giant cells, which strongly suggested a tuberculosis infection. Consequently, we initiated anti-tubercular chemotherapy as the treatment approach. Our patient exhibited a positive response to the treatment, and after one year, she experienced complete resolution of the disease. This case underscores the importance of maintaining a high level of clinical suspicion for tuberculosis, especially in endemic areas, when encountering unusual presentations. Level of evidence: V.

2.
J Orthop ; 49: 81-89, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38144240

RESUMO

Background: Cubitus varus, a common post-traumatic deformity of the elbow in children, poses challenges for both patients and surgeons. Step cut osteotomy has emerged as a reasonable surgical technique to address this condition, offering multiple approaches and modifications. Methods: We present a comprehensive systematic review of techniques for step cut osteotomy in cubitus varus, analyzing 13 studies that meet our inclusion criteria. These studies encompass diverse patient populations, including pediatric and adult cases, and span different geographical regions. Results: Our systematic review explores three primary osteotomy techniques-Classic Step-Cut Osteotomy, Reverse V Osteotomy, and Modified Step Cut Osteotomy-along with their modifications, providing surgeons with valuable options for individualized correction. Functional outcomes showcase improvements in range of motion, functional scores, and carrying angle, highlighting the technique's efficacy in restoring elbow function and enhancing quality of life. Radiological evaluations demonstrate successful corrections of various angles and achievement of bony union, reinforcing the stability and anatomical improvements achieved through step cut osteotomy. Conclusions: Complication rates are notably low, with transient nerve palsies being the most commonly encountered, often resolving within months. Implant failure and other complications are infrequent, underlining the safety and reliability of step cut osteotomy as a surgical intervention for cubitus varus.While the predominance of retrospective studies and heterogeneity across included studies warrant caution, our systematic review provides a robust and diverse synthesis of evidence. It underscores the significance of step cut osteotomy in managing cubitus varus deformity, emphasizing its versatility, favourable outcomes, and safety profile. Further research with rigorous designs and longer follow-up periods will enhance our understanding of step cut osteotomy's role in cubitus varus correction.

3.
Org Lett ; 25(51): 9219-9224, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38112553

RESUMO

The divergent organophotoredox-catalyzed radical cascade annulation reactions of 1,6-enynes were developed. A series of cyclopropane-fused hetero- and carbo-bicyclic, tricyclic, and spiro-tetracyclic compounds were facilely synthesized from a broad scope of 1,6-enynes and 2,6-lutidine N-oxide under mild and metal-free conditions with blue light-emitting diode light irradiation. The cascade annulation reaction occurs with the intermediacy of a ß-oxyvinyl radical, which is produced from photocatalytically generated pyridine N-oxy radical addition to the carbon-carbon triple bond.

4.
Heliyon ; 9(3): e13933, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938438

RESUMO

Hastelloy is categorized as difficult to cut superalloy widely used in aerospace, nuclear reactor components and chemical industry because of its magnificent strength and higher heat efficiency. Since, the machining of this material is quite difficult and hence suitable cooling systems are required to achieve sustainable manufacturing goals. The present investigation has been focused on the machining performance and sustainability assessment of turning Hastelloy C-276 in dry, flood and minimum quantity lubrication (MQL) environments. Taguchi L-9 array has been utilized to conduct and record the experimental output along with TOPSIS approach to evaluate the sustainability. The output responses viz. cutting forces, surface roughness, cutting temperature, energy consumption and carbon emission have been recorded at various levels of input variables. The experimental results revealed that MQL has minimized the cutting forces, surface roughness and temperature by margin of 20-38%. Likewise, energy expenditure and carbon emission was declined by 9-27% respectively compared to other conditions. Sustainability analysis explored best performance index during equal weightage criteria at 125 m/min, 0.246 and 0.8 mm doc under MQL. However, implementing assigned weightage system evaluated best condition for dry machining as 88 m/min and 0.246 mm/rev having same doc. SEM analysis of insert reported mainly abrasion and adhesion type of tool wear at all parametric range and machining conditions.

5.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677545

RESUMO

In the present scenario, the research is now being focused on the naturally occurring polymers that can gradually replace the existing synthetic polymers for the development of bio composites having applications in medical surgeries and human implants. With promising mechanical properties and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio material. In order to examine the applicability of PLA in human implants, the current article sheds light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical properties. In the latter half, various processes used for the fabrication of biomaterials are discussed in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human implants) are represented with respective advantages in the sphere of biomaterials.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Poliésteres , Polímeros , Alicerces Teciduais
6.
Heliyon ; 8(11): e11710, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468141

RESUMO

In recent days, the utilization of lightweight alloys for various applications has been increased massively. Starting from the automobile industry, aerospace industry, and even in the biomedical field, there is a need for dissimilar precise joining of steel to other light alloys (magnesium alloy, aluminum alloy, titanium alloy). However, those alloys are characterized by different melting temperatures, machinability, strength, thermal conductivity, and oxygen reactivity. Considering this welding to challenge ongoing laser welding efforts to improve laser welding quality by altering the welding techniques, modes, proper use of shielding gasses, using suitable process parameters, and even proper joint and surface preparations are discussed. The feasibility of implementing all those things in the industrial setup can be understood only after analyzing recent works. Changes in microstructure and the defects (solidification cracking, intermetallic components formation, porosity) arrived during and after laser welding of these materials are reviewed. The paper also highlights the effect of shielding gas, welding speed, laser power, defocusing position, etc. during laser welding of lightweight materials. The critical issues related to dissimilar laser welding of these combinations and some remedial measures are discussed. The purpose of this review is to emphasize and understand the recent trends of dissimilar laser welding and explore the scope of industry level applications.

7.
Heliyon ; 8(12): e12053, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36536921

RESUMO

Rotating machine is a common class of machinery in most of the industry and the main root cause of machinery failure is a faulty bearing. Bearings are most widely used in various types of machine elements ranging from small to heavy machinery and the common cause of machinery failure is a fault in bearings. Bearing faults can be external or internal which mainly depends on different operating conditions and these faults may cause severe damage to rotating components in machinery. Signal processing methods have traditionally been used to diagnose faults in tapered roller element bearings. A wavelet transform is the most common and effective tool for understanding and analyzing the vibration signal of bearings as it is responded quickly and observed sudden changes along with the transient impulses in the signal caused by faults in the different parts of bearing elements. In this article, localized fault's position and size on the outer ring of tapered roller bearing were investigated. Three different real values wavelets (DB2, Meyer, and Morlet) are analyzed as per Simple Sensitivity index criteria. Finally, experiments are carried out with four sets of bearing having fault on outer racing of bearing, and for the estimation of fault size, the setup was misaligned at ranging (0.00mm-1.50 mm) with a uniform deviation of 0.50 mm for each experiment. Shannon entropy was calculated for the identification of localized size of the faults with wavelets nomenclature, the result of DB2, Morlet, and Meyer wavelets at high-frequency zone are presented.The scanning electron microscope (SEM) has been taken for the estimation of size of the fault. The proposed method has been successfully implemented for measuring defect width and size. Also, it has been observed that with increased magnification level from 0.00 mm to 0.50 mm, the crack width of the faulty bearing was increased by 0.813 mm, and whenever on further increase in magnification level of 0.50, 1.00 mm and 1.50 mm the crack width of the faulty bearing was increased by 2.568 mm and 3.856 respectively.

8.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235971

RESUMO

Lateral reinforcement has a significant impact on the strength and ductility of concrete. Extra confinement is provided in this project by carbon fiber reinforced polymer (CFRP) sheets wrapped around the outside of reinforced concrete (RC) beams. To determine the failure criteria and maximum load-carrying capacity of beams, numerous specimens were cast and tested in a flexural testing machine. This paper presents the results of an experimental investigation of functionally damaged reinforced concrete beams repaired in flexure with CFRP sheets. The most essential variable in this study is the CFRP sheet scheme, and seven different strengthening schemes (B1 to B7) were explored in the experimental program. In conclusion, the findings of the study showed that flexural retrofitting of reinforced concrete beams with CFRP sheets is functionally effective, with restored strength and stiffness values roughly equivalent to or greater than those of the control beam (CB1). The efficiency of the flexural retrofitting mechanism appears to vary depending on the layout of the CFRP sheet. Steel rupture and concrete crushing were shown to be the most common failure modes in the investigation, causing CFRP sheets to break in retrofitted beams.

9.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955385

RESUMO

Smart manufacturing is the demand of industry 4.0, in which the mass production of difficult-to-cut materials is of great concern to fulfil the goal of sustainable machining. Presently, the machining of superalloy is of upmost interest because of its wide application. However, the limited data on the turning of Hastelloy C-276 highlights its challenges during processing. Hence, the machining performance of superalloy considering surface quality, thermal aspects and chip reduction coefficient was examined with minimum quantity lubrication of several oils to address the sustainable development goal (SDG-12). The output responses were optimized through response surface methodology along with analysis of variance. The research exhibited that the output responses were dominated by cutting speed and feed rate having a percentage benefaction of 24.26% and 60%, respectively, whilst the depth of cut and lubricant type have an influence of 10-12%. No major difference in temperature range was reported during the different lubrication conditions. However, a substantial variation in surface roughness and the chip reduction coefficient was revealed. The percentage error evaluated in surface roughness, temperature and chip reduction coefficient was less than 5%, along with an overall desirability of 0.88, describing the usefulness of the model used. The SEM micrograph indicated a loss of coating, nose and flank wear during all lubrication conditions. Lastly, incorporating a circular economy has reduced the economic, ecological and environmental burden.

10.
Materials (Basel) ; 15(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629658

RESUMO

Concrete is a composite material that is commonly used in the construction industry. It will certainly be exposed to fires of varying intensities when used in buildings and industries. The major goal of this article was to look into the influence of mineral additions such as foundry sand and marble dust on the residual characteristics of concrete. To examine the behavior of residual characteristics of concrete after fire exposure, marble dust was substituted for cement and fine sand was substituted for foundry sand in varying amounts ranging from 0% to 20%. It aided in the better disposal of waste material so that it might be used as an addition. The purpose of the experiment was to see how increased temperatures affected residual properties of concrete, including flexural strength, compressive strength, tensile strength, static as well as dynamic elastic modulus, water absorption, mass loss, and ultrasonic pulse velocity. At temperatures of 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C, the typical fire exposure behavior of concrete was investigated. The effects of two cooling techniques, annealing and quenching, on the residual properties of concrete after exposure to high temperatures were investigated in this study. Replacement of up to 10% of the cement with marble dust and fine sand with foundry sand when concrete is exposed to temperatures up to 400 °C does not influence the behavior of concrete. At temperatures above 400 °C, however, the breakdown of concrete, which includes marble dust and foundry sand, causes a rapid deterioration in the residual properties of concrete, primarily for replacement of more than 10%.

11.
J Healthc Eng ; 2022: 6436818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368917

RESUMO

The outbreak of novel COVID-19 has severely and unprecedentedly affected millions of people across the globe. The painful respiratory distress caused during this disease calls for external assistance to the victims in the form of ventilation. The most common types of artificial ventilating units available at the healthcare facilities and hospitals are exorbitantly expensive to manufacture, and their number is fairly inadequate even in the so-called developed countries to cater to the burning needs of an ever-increasing number of ailing human subjects. According to available reports, without the provision of ventilation, the novel COVID-19 patients are succumbing to their ailments in a huge number of cases. This colossal problem of the availability of ventilator units can be addressed to a great extent by readily producible and cost-effective ventilating units that can be used on those suffering patients during an acute emergency and in the absence of conventional expensive ventilators at hospitals and medical care units. This paper has made an attempt to design and simulate a simple, yet effective, mechanized ventilator unit, which can be conveniently assembled without a profuse skillset and operated to resuscitate an ailing human patient. The stepper motor-controlled kinematic linkage is designed to deliver the patient with a necessitated discharge of air at optimum oxygen saturation through the AMBU bag connected in a ventilation circuit. With the associated code on MATLAB, the motor control parameters such as angular displacement and speed are deduced according to the input patient conditions (age group, tidal volume, breathing rate, etc.) and thereafter fed to the controller that drives the stepper motor. With a proposed feedback loop, the real-time static and dynamic compliance, airway resistance values can be approximately determined from the pressure variation cycle and fed to the controller unit to adjust the tidal volume as and when necessary. The simplistic yet robust design not only renders easy manufacturability by conventional and rapid prototyping techniques like 3D printing at different scales but also makes the product easily portable with minimal handling difficulty. Keeping the motto of Health for All as envisioned by the WHO, this low-cost indigenously engineered ventilator will definitely help the poor and afflicted towards their right to health and will help the medical professionals buy some time to manage the patient with acute respiratory distress syndrome (ARDS) towards recovery. Moreover, this instrument mostly includes readily available functional units having standard specifications and can be considered as standard bought-out items.


Assuntos
COVID-19 , Humanos , Pandemias , Respiração Artificial/métodos , Volume de Ventilação Pulmonar , Ventiladores Mecânicos
12.
Polymers (Basel) ; 13(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502938

RESUMO

Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells, fuel cells, supercapacitors, LEDs, and adhesive applications with desired-appealing and cost-effective, functional surface coatings. The distinctive properties of nanocomposite materials involve significantly improved mechanical characteristics, barrier-properties, weight-reduction, and increased, long-lasting performance in terms of heat, wear, and scratch-resistant. Constraint in availability of power due to continuous depletion in the reservoirs of fossil fuels has affected the performance and functioning of electronic and energy storage appliances. For such reasons, efforts to modify the performance of such appliances are under way through blending design engineering with organic electronics. Unlike conventional inorganic semiconductors, organic electronic materials are developed from conducting polymers (CPs), dyes and charge transfer complexes. However, the conductive polymers are perhaps more bio-compatible rather than conventional metals or semi-conductive materials. Such characteristics make it more fascinating for bio-engineering investigators to conduct research on polymers possessing antistatic properties for various applications. An extensive overview of different techniques of synthesis and the applications of polymer bio-nanocomposites in various fields of sensors, actuators, shape memory polymers, flexible electronics, optical limiting, electrical properties (batteries, solar cells, fuel cells, supercapacitors, LEDs), corrosion-protection and biomedical application are well-summarized from the findings all across the world in more than 150 references, exclusively from the past four years. This paper also presents recent advancements in composites of rare-earth oxides based on conducting polymer composites. Across a variety of biological and medical applications, the fact that numerous tissues were receptive to electric fields and stimuli made CPs more enticing.

13.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451161

RESUMO

In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.

14.
Cureus ; 13(1): e12585, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33575147

RESUMO

Introduction Many surgical techniques have been described for the treatment of Neer type II lateral end clavicle fractures like open reduction and internal fixation with hook plate, tension band wiring, coracoclavicular screw fixation, and distal clavicle locking plate. However, most of these operative procedures are associated with high perioperative complications ranging from hardware prominence, hardware failure, screw and plate pull-out, and infection. As the lateral end clavicle fractures has both vertical and horizontal stress forces, any technique counteracting both the forces should result in a better clinical outcome. Therefore, this study was conducted to assess the functional and radiological outcome of type II lateral end clavicle fracture treated using pre-contoured locking plate along with coracoclavicular reconstruction with endobutton and fiberwire. Methods Thirty-two consecutive patients with Neer type II fractures of the lateral end of clavicle were treated surgically using pre-contoured locking plate and coracoclavicular reconstruction with endobutton and fiberwire between May 2014 and December 2016. Clinical outcome was assessed using the University of California Los Angeles (UCLA) shoulder score and Constant Murley score. The coracoclavicular distance was also recorded. These were compared to the unaffected side at one-year follow-up. Results The bony union was achieved in all cases. There were no major complications in any of the patients. All the patients were able to return to their preinjury level of activity. The UCLA score, the Constant Murley score, and coracoclavicular distance did not vary significantly at a one-year interval when compared to the normal shoulder. Conclusion Open reduction and internal fixation of Neer type II lateral end clavicle fractures using pre-contoured locking distal clavicle plate along with coracoclavicular reconstruction with endobutton and No. 2 fiberwire provide an excellent functional and radiological outcome.

15.
Materials (Basel) ; 13(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212794

RESUMO

Despite several additive manufacturing techniques are commercially available in market, Fused Deposition Modeling (FDM) is increasingly used by researchers and engineers for new product development. FDM is an established process with a plethora of advantages, but the visible surface roughness (SR), being an intrinsic limitation, is major barrier against utilization of fabricated parts for practical applications. In the present study, the chemical finishing method, using vapour of acetone mixed with heated air, is being used. The combined impact of orientation angle, finishing temperature and finishing time has been studied using Taguchi and ANOVA, whereas multi-criteria optimization is performed using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The surface finish was highly responsive to increase in temperature while orientation angle of 0° yielded maximum strength; increase in finishing time led to weight gain of FDM parts. As the temperature increases, the percentage change in surface roughness increases as higher temperature assists the melt down process. On the other hand, anisotropic behaviour plays a major role during tensile testing. The Signal-to-noise (S/N) ratio plots, and ANOVA results indicated that surface finish is directly proportionate to finishing time because a longer exposure results in complete layer reflowing and settlement.

16.
Polymers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007848

RESUMO

Fused filament fabrication (FFF), a portable, clean, low cost and flexible 3D printing technique, finds enormous applications in different sectors. The process has the ability to create ready to use tailor-made products within a few hours, and acrylonitrile butadiene styrene (ABS) is extensively employed in FFF due to high impact resistance and toughness. However, this technology has certain inherent process limitations, such as poor mechanical strength and surface finish, which can be improved by optimizing the process parameters. As the results of optimization studies primarily depend upon the efficiency of the mathematical tools, in this work, an attempt is made to investigate a novel optimization tool. This paper illustrates an optimization study of process parameters of FFF using neural network algorithm (NNA) based optimization to determine the tensile strength, flexural strength and impact strength of ABS parts. The study also compares the efficacy of NNA over conventional optimization tools. The advanced optimization successfully optimizes the process parameters of FFF and predicts maximum mechanical properties at the suggested parameter settings.

17.
Materials (Basel) ; 13(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781710

RESUMO

Monel K-500, a nickel-copper based alloy, is a very hard and tough material. Machining of such hard and tough materials always becomes a challenge for industry and this has been resolved by wire electric discharge machining (WEDM), a popular non-conventional machining method used for machining tough and hard materials having complex shapes. For the first time reported in this present research work is an experimental investigation executed on Ni-27Cu-3.15Al-2Fe-1.5Mn based superalloy using WEDM to model cutting rate (CR) and surface roughness (SR) using response surface methodology (RSM). The process parameters have been selected as pulse-on time, pulse-off time, spark-gap voltage and wire-feed rate. Experiments have been planned according to the central composite design (CCD). The results show that pulse-on time has a direct effect on CR while the pulse-off time has a reverse effect. The CR increases as pulse-on time increases, and decreases as pulse-off time increases. SR increases as pulse-on time increases, and decreases as pulse-off time increases. Furthermore, increase in spark-gap voltage decreases CR and SR both. The wire feed-rate has a negligible effect for both the response parameters. The optimized values of CR and SR achieved through multi-response optimization are 2.48 mm/min and 2.12 µm, respectively.

18.
Open Orthop J ; 11: 353-368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603567

RESUMO

Pediatric femoral shaft fractures account for less than 2% of all fractures in children. However, these are the most common pediatric fractures necessitating hospitalization and are associated with prolonged hospital stay, prolonged immobilization and impose a significant burden on the healthcare system as well as caregivers. In this paper, the authors present a comprehensive review of epidemiology, aetiology, classification and managemement options of pediatric femoral shaft fractures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA