RESUMO
Our knowledge of iron (Fe) uptake and mobilization in plants is mainly based on Arabidopsis and rice. Although multiple players of Fe homeostasis have been elucidated, there is a significant gap in our understanding of crop species, such as wheat. It is, therefore, imperative not only to understand the different hurdles for Fe enrichment in tissues but also to address specifically the knowns/unknowns involved in the plausible mechanism of Fe sensing, signaling, transport, and subsequent storage in plants. In the present review, a unique perspective has been described in light of recent knowledge generated in wheat, an economically important crop. The strategies to boost efficient Fe uptake, transcriptional regulation, and long-distance mobilization in grains have been discussed, emphasizing recent biotechnological routes to load Fe in grains. This article also highlights the new elements of physiological and molecular genetics that underpin the mechanistic insight for the identified Fe-related genes and discusses the bottlenecks in unloading the Fe in grains. The information presented here will provide much-needed resources and directions to overcome challenges and design efficient strategies to enhance the Fe density in wheat grains.
RESUMO
Iron (Fe) is an essential micronutrient for all organisms. In crop plants, Fe deficiency can decrease crop yield significantly; however, our current understanding of how major crops respond to Fe deficiency remains limited. Herein, the effect of Fe deprivation at both the transcriptomic and metabolic level in hexaploid wheat was investigated. Genome-wide gene expression reprogramming was observed in wheat roots subjected to Fe starvation, with a total of 5854 genes differentially expressed. Homoeologue and subgenome-specific analysis unveiled the induction-biased contribution from the A and B genomes. In general, the predominance of genes coding for nicotianamine synthase, yellow stripe-like transporters, metal transporters, ABC transporters, and zinc-induced facilitator-like protein was noted. Expression of genes related to the Strategy II mode of Fe uptake was also predominant. Our transcriptomic data were in agreement with the GC-MS analysis that showed the enhanced accumulation of various metabolites such as fumarate, malonate, succinate, and xylofuranose, which could be contributing to Fe mobilization. Interestingly, Fe starvation leads to a significant temporal increase of glutathione S-transferase at both the transcriptional level and enzymatic activity level, which indicates the involvement of glutathione in response to Fe stress in wheat roots. Taken together, our result provides new insight into the wheat response to Fe starvation at the molecular level and lays the foundation to design new strategies for the improvement of Fe nutrition in crops.
Assuntos
Deficiências de Ferro , Raízes de Plantas/genética , Poliploidia , Triticum/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Metaboloma , RNA-Seq , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Transcrição Gênica , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Regulação para Cima/genéticaRESUMO
HIV-1 subtype B and CRF01_AE are the predominant infecting subtypes among men who have sex with men (MSM) in Singapore. The genetic history, population dynamics and pattern of transmission networks of these genotypes remain largely unknown. We delineated the phylodynamic profiles of HIV-1 subtype B, CRF01_AE and the recently characterized CRF51_01B strains circulating among the MSM population in Singapore. A total of 105 (49.5%) newly-diagnosed treatment-naïve MSM were recruited between February 2008 and August 2009. Phylogenetic reconstructions of the protease gene (HXB2: 2239 - 2629), gp120 (HXB2: 6942 - 7577) and gp41 (HXB2: 7803 - 8276) of the env gene uncovered five monophyletic transmission networks (two each within subtype B and CRF01_AE and one within CRF51_01B lineages) of different sizes (involving 3 - 23 MSM subjects, supported by posterior probability measure of 1.0). Bayesian coalescent analysis estimated that the emergence and dissemination of multiple sub-epidemic networks occurred between 1995 and 2005, driven largely by subtype B and later followed by CRF01_AE. Exponential increase in effective population size for both subtype B and CRF01_AE occurred between 2002 to 2007 and 2005 to 2007, respectively. Genealogical estimates suggested that the novel CRF51_01B lineages were probably generated through series of recombination events involving CRF01_AE and multiple subtype B ancestors. Our study provides the first insight on the phylodynamic profiles of HIV-1 subtype B, CRF01_AE and CRF51_01B viral strains circulating among MSM in Singapore.