Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Rep ; 13(1): 17433, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833355

RESUMO

Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.


Assuntos
Ciclofilinas , Penicillium , Ciclofilinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidilprolil Isomerase/genética , Penicillium/genética , Penicillium/metabolismo , Ciclosporina/farmacologia
2.
J Control Release ; 359: 161-174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182806

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor with a poor prognosis and limited therapeutic options. Temozolomide (TMZ) is the first-line chemotherapeutic agent used for the treatment of GBM; however, it suffers from several limitations, including short half-life, rapid metabolism, <1% brain bioavailability, methyl guanine methyl transferase (MGMT) based chemoresistance, and hematological toxicities. Several approaches have been adopted to overcome these limitations, particularly by using nanotechnology-based systems, but its physicochemical properties make TMZ challenging to load into these nanocarriers. In the current research, we conjugated TMZ with different fatty acids, i.e., linoleic acid (LA), oleic acid (OA), and palmitic acid (PA), to obtain TMZ-fatty acid conjugates, which are comparatively hydrophobic, less prone to degradation and potent. These conjugates were thoroughly characterized using 1H NMR spectroscopy, high-resolution mass spectrometry (HR-MS), and reverse phase-high performance liquid chromatography (RP-HPLC). The synthesized conjugates, namely Temozolomide-oleic acid (TOA,6R1), Temozolomide-linoleic acid (TLA, 6R2), and Temozolomide-palmitic acid (TPA, 6R3), showed an IC50 of 101.4, 67.97, and 672.04 µM, respectively in C6 cells and 428.257, 366.43 and 413.69 µM, respectively in U87-MG cells. On the other hand, the free TMZ showed an IC50 of >1000 µM and 564.23 µM in C6 and U87-MG, respectively. Further, the in vivo efficacy of the TMZ-fatty acid conjugates was evaluated in the C6-induced orthotropic rat glioblastoma model, wherein the TMZ-fatty acid conjugate showed improved survival rate (1.6 folds) and overall health of the animals. Collectively, the conjugation of fatty acids with TMZ improves its anticancer potential against glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Ácidos Graxos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Ácidos Linoleicos/uso terapêutico , Ácidos Palmíticos/uso terapêutico , Ácidos Oleicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Pharmaceutics ; 15(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36986712

RESUMO

Rotigotine (RTG) is a non-ergoline dopamine agonist and an approved drug for treating Parkinson's disease. However, its clinical use is limited due to various problems, viz. poor oral bioavailability (<1%), low aqueous solubility, and extensive first-pass metabolism. In this study, rotigotine-loaded lecithin-chitosan nanoparticles (RTG-LCNP) were formulated to enhance its nose-to-brain delivery. RTG-LCNP was prepared by self-assembly of chitosan and lecithin due to ionic interactions. The optimized RTG-LCNP had an average diameter of 108 nm with 14.43 ± 2.77% drug loading. RTG-LCNP exhibited spherical morphology and good storage stability. Intranasal RTG-LCNP improved the brain availability of RTG by 7.86 fold with a 3.84-fold increase in the peak brain drug concentration (Cmax(brain)) compared to intranasal drug suspensions. Further, the intranasal RTG-LCNP significantly reduced the peak plasma drug concentration (Cmax(plasma)) compared to intranasal RTG suspensions. The direct drug transport percentage (DTP (%)) of optimized RTG-LCNP was found to be 97.3%, which shows effective direct nose-to-brain drug uptake and good targeting efficiency. In conclusion, RTG-LCNP enhanced drug brain availability, showing the potential for clinical application.

4.
J Control Release ; 350: 494-513, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985493

RESUMO

Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Humanos , Lipídeos/química , Lipossomos/uso terapêutico , Nanopartículas , Polímeros/uso terapêutico , Temozolomida/uso terapêutico , Água
5.
Mult Scler Relat Disord ; 66: 104059, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908446

RESUMO

BACKGROUND: Natalizumab (NTZ) is increasingly being used in Indian multiple sclerosis (MS) patients. There are no reports on its safety and efficacy, especially with respect to the occurrence of progressive multifocal leukoencephalopathy (PML). OBJECTIVES: To describe the patient characteristics, treatment outcomes, and adverse events, especially the occurrence of PML in NTZ-treated patients. METHODS: A multicentre ambispective study was conducted across 18 centres, from Jan 2012 to Dec 2021. Patients at and above the age of 18 years treated with NTZ were included. Descriptive and comparative statistics were applied to analyze data. RESULTS: During the study period of 9 years, 116 patients were treated with NTZ. Mean age of the cohort was 35.6 ± 9.7 years; 83/116 (71.6%) were females. Relapse rate for the entire cohort in the year before NTZ was 3.1 ± 1.51 while one year after was 0.20±0.57 (p = 0.001; CI 2.45 -3.35). EDSS of the entire cohort in the year before NTZ was 4.5 ± 1.94 and one year after was 3.8 ± 2.7 (p = 0.013; CI 0.16-1.36). At last follow up (38.3 ± 22.78 months) there were no cases of PML identified. CONCLUSIONS: Natalizumab is highly effective and safe in Indian MS patients, with no cases of PML identified at last follow up.


Assuntos
Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Adolescente , Adulto , Feminino , Humanos , Fatores Imunológicos/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/etiologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/induzido quimicamente , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/efeitos adversos , Nitrocompostos , Tiazóis
6.
Trop Med Infect Dis ; 7(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35622708

RESUMO

We sought to assess breakthrough SARS-CoV-2 infections in vaccinated individuals by variant distribution and to identify the common risk associations. The PubMed, Web of Science, ProQuest, and Embase databases were searched from 2019 to 30 January 2022. The outcome of interest was breakthrough infections (BTIs) in individuals who had completed a primary COVID-19 vaccination series. Thirty-three papers were included in the review. BTIs were more common among variants of concern (VOC) of which Delta accounted for the largest number of BTIs (96%), followed by Alpha (0.94%). In addition, 90% of patients with BTIs recovered, 11.6% were hospitalized with mechanical ventilation, and 0.6% resulted in mortality. BTIs were more common in healthcare workers (HCWs) and immunodeficient individuals with a small percentage found in fully vaccinated healthy individuals. VOC mutations were the primary cause of BTIs. Continued mitigation approaches (e.g., wearing masks and social distancing) are warranted even in fully vaccinated individuals to prevent transmission. Further studies utilizing genomic surveillance and heterologous vaccine regimens to boost the immune response are needed to better understand and control BTIs.

7.
Physiol Plant ; 174(2): e13631, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35049071

RESUMO

OsCYP2-P is an active cyclophilin (having peptidyl-prolyl cis/trans-isomerase activity, PPIase) isolated from the wild rice Pokkali having a natural capacity to grow and yield seeds in coastal saline regions of India. Transcript abundance analysis in rice seedlings showed the gene is inducible by multiple stresses, including salinity, drought, high temperature, and heavy metals. To dissect the role of OsCYP2-P gene in stress response, we raised overexpression (OE) and knockdown (KD) transgenic rice plants with >2-3 folds higher and approximately 2-fold lower PPIase activity, respectively. Plants overexpressing this gene had more favorable physiological and biochemical parameters (K+ /Na+ ratio, electrolytic leakage, membrane damage, antioxidant enzymes) than wild type, and the reverse was observed in plants that were knocked down for this gene. We propose that OsCYP2-P contributes to stress tolerance via maintenance of ion homeostasis and thus prevents toxic cellular ion buildup and membrane damage. OE plants were found to have a higher harvest index and higher number of filled grains under salinity and drought stress than wild type. OsCYP2-P interacts with calmodulin, indicating it functions via the Ca-CaM pathway. Compared to the WT, the germinating OE seeds exhibited a substantially higher auxin level, and this hormone was below the detection limits in the WT and KD lines. These observations strongly indicate that OsCyp2-P affects the signaling and transport of auxin in rice.


Assuntos
Oryza , Calmodulina/genética , Calmodulina/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética
8.
Front Plant Sci ; 13: 1053524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589073

RESUMO

Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitous proteins which are essential for cis-trans isomerisation of peptide bonds preceding the proline residue. PPIases are categorized into four sub-families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs). Apart from catalysing the cis-trans isomerization, these proteins have also been implicated in diverse cellular functions. Though PPIases have been identified in several important crop plants, information on these proteins, except cyclophilins, is scanty in wheat. In order to understand the role of these genes in wheat, we carried out genome-wide identification using computational approaches. The present study resulted in identification of 71 FKBP (TaFKBP) 12 parvulin (TaPar) and 3 PTPA (TaPTPA) genes in hexaploid wheat genome, which are distributed on different chromosomes with uneven gene densities. The TaFKBP and TaPar proteins, besides PPIase domain, also contain additional domains, indicating functional diversification. In silico prediction also revealed that TaFKBPs are localized to ER, nucleus, chloroplast and cytoplasm, while the TaPars are confined to cytoplasm and nucleus. The TaPTPAs, on the contrary, appear to be present only in the cytoplasm. Evolutionary studies predicted that most of the TaFKBP, TaPar and TaPTPA genes in hexaploid wheat have been derived from their progenitor species, with some events of loss or gain. Syntenic analysis revealed the presence of many collinear blocks of TaFKBP genes in wheat and its sub-genome donors. qRT-PCR analysis demonstrated that expression of TaFKBP and TaPar genes is regulated differentially by heat stress, suggesting their likely involvement in thermotolerance. The findings of this study will provide basis for further functional characterization of these genes and their likely applications in crop improvement.

9.
Mater Sci Eng C Mater Biol Appl ; 128: 112305, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474856

RESUMO

In spite of established evidence of the synergistic combination of hydrophobic anticancer molecule and microRNA for breast cancer treatment, their in vivo delivery has not been realized owing to their instability in the biological milieu and varied physicochemical properties. The present work reports folate targeted hybrid lipo-polymeric nanoplexes for co-delivering DTX and miR-34a. These nanoplexes exhibited a mean size of 129.3 nm with complexation efficiency at an 8:1 N/P ratio. The obtained nanoplexes demonstrated higher entrapment efficiency of DTX (94.8%) with a sustained release profile up to 85% till 48 h. Further, an improved transfection efficiency in MDA-MB-231 and 4T1 breast cancer cells was observed with uptake primarily through lipid-raft and clathrin-mediated endocytosis. Further, nanoplexes showed improved cytotoxicity (~3.5-5 folds), apoptosis (~1.6-2.0 folds), and change in expression of apoptotic genes (~4-7 folds) compared to the free treatment group in breast cancer cells. In vivo systemic administration of FA-functionalized DTX and FAM-siRNA-loaded nanoplexes showed an improved area under the curve (AUC) as well as circulation half-life compared to free DTX and naked FAM-labelled siRNA. Acute toxicity studies of the cationic polymer showed no toxicity at a dose equivalent to 10 mg/kg based on the hematological, biochemical, and histopathological examination.


Assuntos
Antineoplásicos , Neoplasias da Mama , MicroRNAs/administração & dosagem , Nanopartículas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos/uso terapêutico , Feminino , Ácido Fólico , Humanos , MicroRNAs/genética , Polímeros/uso terapêutico
10.
Biomaterials ; 275: 120953, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34218051

RESUMO

Designing grafted biodegradable polymers with tailored multi-functional properties is one of the most researched fields with extensive biomedical applications. Among many biodegradable polymers, polycarbonates have gained much attention due to their ease of synthesis, high drug loading, and excellent biocompatibility profiles. Among various monomers, 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) derived cyclic carbonate monomers have been extensively explored in terms of their synthesis as well as their polymerization. Since the late 90s, significant advancements have been made in the design of bis-MPA derived cyclic carbonate monomers as well as in their reaction schemes. Currently, bis-MPA derived polycarbonates have taken a form of an entire platform with a multitude of applications, the latest being in the field of nanotechnology, targeted drug, and nucleic acid delivery. The present review outlines an up to date developments that have taken place in the last two decades in the design, synthesis, and biomedical applications of bis-MPA derived cyclic carbonates and their (co)polymers.


Assuntos
Preparações Farmacêuticas , Polímeros , Carbonatos , Cimento de Policarboxilato , Propionatos
11.
Sci Rep ; 11(1): 12292, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112860

RESUMO

Peptidyl-prolyl cis-trans isomerases (PPIases) are the only class of enzymes capable of cis-trans isomerization of the prolyl peptide bond. The PPIases, comprising of different families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs), play essential roles in different cellular processes. Though PPIase gene families have been characterized in different organisms, information regarding these proteins is lacking in Penicillium species, which are commercially an important fungi group. In this study, we carried out genome-wide analysis of PPIases in different Penicillium spp. and investigated their regulation by salt stress in a halotolerant strain of Penicillium oxalicum. These analyses revealed that the number of genes encoding cyclophilins, FKBPs, parvulins and PTPAs in Penicillium spp. varies between 7-11, 2-5, 1-2, and 1-2, respectively. The halotolerant P. oxalicum depicted significant enhancement in the mycelial PPIase activity in the presence of 15% NaCl, thus, highlighting the role of these enzymes in salt stress adaptation. The stress-induced increase in PPIase activity at 4 and 10 DAI in P. oxalicum was associated with higher expression of PoxCYP18. Characterization of PPIases in Penicillium spp. will provide an important database for understanding their cellular functions and might facilitate their applications in industrial processes through biotechnological interventions.


Assuntos
Genoma Fúngico/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Penicillium/genética , Peptidilprolil Isomerase/genética , Sequência de Aminoácidos/genética , Catálise , Ciclofilinas/genética , Regulação Fúngica da Expressão Gênica/genética , Peptidilprolil Isomerase/classificação , Fosfoproteínas Fosfatases , Dobramento de Proteína , Proteínas de Ligação a Tacrolimo/genética
12.
Calcif Tissue Int ; 108(6): 693-707, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797562

RESUMO

Both diabetes mellitus and osteoporosis constitute a notable burden in terms of quality of life and healthcare costs. Diabetes mellitus affecting the skeletal system has been gaining attention in recent years and is now getting recognized as yet another complication of the disease, known as diabetic bone disease. As this condition with weaker bone strength increases fracture risk and reduces the quality of life, so much attention is being paid to investigate the molecular pathways through which both diabetes and its therapy are affecting bone metabolism. Out of many therapeutic agents currently available for managing diabetes mellitus, metformin is one of the most widely accepted first choices worldwide. The purpose of this review is to describe the effects of biguanide-metformin on bone metabolism in type 2 diabetes mellitus including its plausible mechanisms of action on the skeleton. In vitro studies suggest that metformin directly stimulates osteoblasts differentiation and may inhibit osteoclastogenesis by increasing osteoprotegerin expression, both through activation of the AMPK signaling pathway. Several studies in both preclinical and clinical settings report the favorable effects of metformin on bone microarchitecture, bone mineral density, bone turnover markers, and fracture risk. However, animal studies were not specific in terms of the diabetic models used and clinical studies were associated with several confounders. The review highlights some of these limitations and provide future recommendations for research in this area which is necessary to better understand the role of metformin on skeletal outcomes in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Animais , Densidade Óssea , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Controle Glicêmico , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Qualidade de Vida
13.
Front Plant Sci ; 11: 585212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193535

RESUMO

Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.

14.
Mol Pharm ; 17(11): 4040-4066, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32902291

RESUMO

Nucleic acid therapeutics for RNA interference (RNAi) are gaining attention in the treatment and management of several kinds of the so-called "undruggable" tumors via targeting specific molecular pathways or oncogenes. Synthetic ribonucleic acid (RNAs) oligonucleotides like siRNA, miRNA, shRNA, and lncRNA have shown potential as novel therapeutics. However, the delivery of such oligonucleotides is significantly hampered by their physiochemical (such as hydrophilicity, negative charge, and instability) and biopharmaceutical features (in vivo serum stability, fast renal clearance, interaction with extracellular proteins, and hindrance in cellular internalization) that markedly reduce their biological activity. Recently, several nanocarriers have evolved as suitable non-viral vectors for oligonucleotide delivery, which are known to either complex or conjugate with these oligonucleotides efficiently and also overcome the extracellular and intracellular barriers, thereby allowing access to the tumoral micro-environment for the better and desired outcome in glioblastoma multiforme (GBM). This Review focuses on the up-to-date advancements in the field of RNAi nanotherapeutics utilized for GBM treatment.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Terapia Genética/métodos , Glioblastoma/tratamento farmacológico , MicroRNAs/administração & dosagem , Nanoconjugados/química , Oligonucleotídeos/administração & dosagem , Interferência de RNA , RNA Longo não Codificante/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , MicroRNAs/química , MicroRNAs/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Indian Soc Periodontol ; 22(1): 78-83, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568179

RESUMO

A patient undergoing orthodontic treatment presented with multiple recession defects in maxillary anterior region. After thorough clinical examination and assessment, measurements were recorded. Maxillary anterior teeth with recession defects of 3-4 mm were treated with coronally advanced flap and platelet-rich fibrin (PRF) membrane. Regular follow-up was maintained for the patient at 3, 6 , 12, 18, 24, 30, and 36 months. After 36 months, significant root coverage of 100 percent was observed in four defects and 50% coverage in one defect. This shows that PRF membrane along with coronally advanced provides a predictable and significant result for management of recession defects.

16.
Cell Stress Chaperones ; 23(3): 411-428, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29116579

RESUMO

Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.


Assuntos
Adaptação Fisiológica/genética , Secas , Genes de Plantas , Proteínas de Plantas/genética , Proteínas R-SNARE/genética , Estresse Fisiológico/genética , Triticum/genética , Triticum/fisiologia , Antioxidantes/metabolismo , Arabidopsis/genética , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Ácidos Indolacéticos/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fenótipo , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Triticum/efeitos dos fármacos
17.
Protein Pept Lett ; 24(6): 551-560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28425861

RESUMO

BACKGROUND: The wheat cyclophilin, TaCYPA-1, shows peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, the significance of different cysteine residues in regulation of PPIase activity of this protein has not been investigated. OBJECTIVES: The main objective of this study was to analyze the role of different disulphide linkages in redox mechanisms that modulate the PPIase activity of TaCYPA-1. METHOD: Site-directed mutants of TaCYPA-1 were generated by substituting cysteine residues at positions -40 and -122 with serine and -126 with proline. The recombinant proteins were expressed in Escherichia coli and purified. The effect of Cu2+ and N-ethylmaleimide was studied on PPIase activity of the purified recombinant cyclophilins for analyzing the role of different cysteine residues in the modulation of enzyme activity. The changes in secondary structure of TaCYPA-1 and its mutants were analysed by recording far UV CD spectra. The effect of different cysteine substitutions on thermotolerance of E. coli was studied by monitoring the cell growth at 47 °C after 2 h, 3 h and 5 h of heat stress. RESULTS: The catalytic efficiencies (Kcat/Km) of TaCYPA-1C40S (0.37 X 106 M-1 s-1) and TaCYPA- 1C122S (0.31 X 106 M-1 s-1) were significantly lower as compared to the native TaCYPA-1 (1.33 X 106 M-1 s-1), whereas Kcat/Km of the double mutant TaCYPA-1C40S/C122S was significantly higher (2.36 X 106 M-1 s-1). Compared to the wild-type TaCYPA-1, the different mutants also showed differential sensitivity to Cu2+. Furthermore, the results of this study also revealed that despite lacking PPIase activity, the mutant TaCYPA-1C126P was able to confer partial protection against heat stress. CONCLUSION: This study revealed that mutation of different cysteine residues in TaCYPA-1 results in differential effect on PPIase activity. It was also observed that of the two pairs of cysteine residues i.e. Cys40/Cys168 and Cys122/Cys126, the latter appears to play major role in redox regulation of TaCYPA-1. The mutant TaCYPA-1C126P, though lacking PPIase activity, was able to impart partial tolerance to heat stress in E. coli, suggesting other functions besides cis to trans isomerisation. This study, therefore, provides new insights into the regulation of plant cyclophilins.


Assuntos
Ciclofilinas/química , Peptidilprolil Isomerase/química , Proteínas Recombinantes/química , Ciclofilinas/genética , Cisteína/genética , Escherichia coli/genética , Peptidilprolil Isomerase/genética , Prolina/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Triticum/enzimologia
18.
Biochimie ; 137: 115-123, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28322928

RESUMO

Imposition of different biotic and abiotic stress conditions results in an increase in intracellular levels of Ca2+ which is sensed by various sensor proteins. Calmodulin (CaM) is one of the best studied transducers of Ca2+ signals. CaM undergoes conformational changes upon binding to Ca2+ and interacts with different types of proteins, thereby, regulating their activities. The present study reports the cloning and characterization of a sorghum cDNA encoding a protein (SbGRBP) that shows homology to glycine-rich RNA-binding proteins. The expression of SbGRBP in the sorghum seedlings is modulated by heat stress. The SbGRBP protein is localized in the nucleus as well as in cytosol, and shows interaction with CaM that requires the presence of Ca2+. SbGRBP depicts binding to single- and also double-stranded DNA. Fluorescence spectroscopic analyses suggest that interaction of SbGRBP with nucleic acids may be modulated after binding with CaM. To our knowledge, this is the first study to provide evidence for interaction of a stress regulated glycine-rich RNA-binding protein with CaM.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina/química , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Cálcio , Proteínas de Ligação a Calmodulina/genética , DNA Complementar/genética , DNA de Plantas , Proteínas de Plantas/genética , Ligação Proteica , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Temperatura
19.
Biochim Open ; 2: 9-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29632833

RESUMO

Growth at high temperatures is one of the desired features for industrial applications of microbes, as it results in decrease in contamination and enhanced solubility of certain substrates. In this study, it is demonstrated that heterologous expression of a wheat cyclophilin, TaCypA-1, confers thermotolerance to Escherichia coli. The TaCypA-1 possesses peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyses cis to trans isomerization of the peptidyl prolyl bonds, a rate limiting step in protein folding. Expression of deleted mutants of TaCypA-1, that lacked PPIase activity, resulted in abrogation of thermotolerance, providing the first evidence that this activity plays a key role in stress tolerance of cells and can be exploited for industrial applications. Further, we also demonstrate that TaCypA-1 interacts with calmodulin (CaM), and the CaM-binding domain is localized to amino acid residues 51-71 in the N-terminus region.

20.
Front Plant Sci ; 6: 809, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528296

RESUMO

Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA