Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140783

RESUMO

A common goal in the convolutional neural network (CNN) modeling of genomic data is to discover specific sequence motifs. Post hoc analysis methods aid in this task but are dependent on parameters whose optimal values are unclear and applying the discovered motifs to new genomic data is not straightforward. As an alternative, we propose to learn convolutions as multinomial distributions, thus streamlining interpretable motif discovery with CNN model fitting. We developed MuSeAM (Multinomial CNNs for Sequence Activity Modeling) by implementing multinomial convolutions in a CNN model. Through benchmarking, we demonstrate the efficacy of MuSeAM in accurately modeling genomic data while fitting multinomial convolutions that recapitulate known transcription factor motifs.


Assuntos
Genômica , Redes Neurais de Computação , Fatores de Transcrição/genética
2.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503105

RESUMO

To date, there are no prognostic/predictive biomarkers to select chemotherapy, immunotherapy, and radiotherapy in individual non-small cell lung cancer (NSCLC) patients. Major immune-checkpoint inhibitors (ICIs) have more DNA copy number variations (CNV) than mutations in The Cancer Genome Atlas (TCGA) NSCLC tumors. Nevertheless, CNV-mediated dysregulated gene expression in NSCLC is not well understood. Integrated CNV and transcriptional profiles in NSCLC tumors (n = 371) were analyzed using Boolean implication networks for the identification of a multi-omics CD27, PD1, and PDL1 network, containing novel prognostic genes and proliferation genes. A 5-gene (EIF2AK3, F2RL3, FOSL1, SLC25A26, and SPP1) prognostic model was developed and validated for patient stratification (p < 0.02, Kaplan-Meier analyses) in NSCLC tumors (n = 1163). A total of 13 genes (COPA, CSE1L, EIF2B3, LSM3, MCM5, PMPCB, POLR1B, POLR2F, PSMC3, PSMD11, RPL32, RPS18, and SNRPE) had a significant impact on proliferation in 100% of the NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNA interference (RNAi) assays (n = 92). Multiple identified genes were associated with chemoresponse and radiotherapy response in NSCLC cell lines (n = 117) and patient tumors (n = 966). Repurposing drugs were discovered based on this immune-omics network to improve NSCLC treatment.

3.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008645

RESUMO

There is an unmet clinical need to identify patients with early-stage non-small cell lung cancer (NSCLC) who are likely to develop recurrence and to predict their therapeutic responses. Our previous study developed a qRT-PCR-based seven-gene microfluidic assay to predict the recurrence risk and the clinical benefits of chemotherapy. This study showed it was feasible to apply this seven-gene panel in RNA sequencing profiles of The Cancer Genome Atlas (TCGA) NSCLC patients (n = 923) in randomly partitioned feasibility-training and validation sets (p < 0.05, Kaplan-Meier analysis). Using Boolean implication networks, DNA copy number variation-mediated transcriptional regulatory network of the seven-gene signature was identified in multiple NSCLC cohorts (n = 371). The multi-omics network genes, including PD-L1, were significantly correlated with immune infiltration and drug response to 10 commonly used drugs for treating NSCLC. ZNF71 protein expression was positively correlated with epithelial markers and was negatively correlated with mesenchymal markers in NSCLC cell lines in Western blots. PI3K was identified as a relevant pathway of proliferation networks involving ZNF71 and its isoforms formulated with CRISPR-Cas9 and RNA interference (RNAi) profiles. Based on the gene expression of the multi-omics network, repositioning drugs were identified for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/patologia , Camundongos , Prognóstico , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Transcrição Gênica/genética
4.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146342

RESUMO

As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases.


Assuntos
Pneumopatias/sangue , Pulmão/metabolismo , MicroRNAs/sangue , Nanotubos de Carbono/toxicidade , RNA Mensageiro/sangue , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Pulmão/efeitos dos fármacos , Pneumopatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Exposição Ocupacional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
EBioMedicine ; 32: 102-110, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29861409

RESUMO

PURPOSE: This study aims to develop a multi-gene assay predictive of the clinical benefits of chemotherapy in non-small cell lung cancer (NSCLC) patients, and substantiate their protein expression as potential therapeutic targets. PATIENTS AND METHODS: The mRNA expression of 160 genes identified from microarray was analyzed in qRT-PCR assays of independent 337 snap-frozen NSCLC tumors to develop a predictive signature. A clinical trial JBR.10 was included in the validation. Hazard ratio was used to select genes, and decision-trees were used to construct the predictive model. Protein expression was quantified with AQUA in 500 FFPE NSCLC samples. RESULTS: A 7-gene signature was identified from training cohort (n = 83) with accurate patient stratification (P = 0.0043) and was validated in independent patient cohorts (n = 248, P < 0.0001) in Kaplan-Meier analyses. In the predicted benefit group, there was a significantly better disease-specific survival in patients receiving adjuvant chemotherapy in both training (P = 0.035) and validation (P = 0.0049) sets. In the predicted non-benefit group, there was no survival benefit in patients receiving chemotherapy in either set. The protein expression of ZNF71 quantified with AQUA scores produced robust patient stratification in separate training (P = 0.021) and validation (P = 0.047) NSCLC cohorts. The protein expression of CD27 quantified with ELISA had a strong correlation with its mRNA expression in NSCLC tumors (Spearman coefficient = 0.494, P < 0.0088). Multiple signature genes had concordant DNA copy number variation, mRNA and protein expression in NSCLC progression. CONCLUSIONS: This study presents a predictive multi-gene assay and prognostic protein biomarkers clinically applicable for improving NSCLC treatment, with important implications in lung cancer chemotherapy and immunotherapy.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA/genética , Prognóstico , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Quimioterapia Adjuvante , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Modelos de Riscos Proporcionais
6.
Int J Toxicol ; 37(4): 276-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29916280

RESUMO

Respiratory exposure to multiwalled carbon nanotubes (MWCNT) or asbestos results in fibrosis; however, the mechanisms to reach this end point may be different. A previous study by our group identified pulmonary effects and significantly altered messenger RNA (mRNA) signaling pathways following exposure to 1, 10, 40, and 80 µg MWCNT and 120 µg crocidolite asbestos on mouse lungs over time at 1-month, 6-month, and 1-year postexposure following pulmonary aspiration. As a continuation to the above study, this current study took an in-depth look at the signaling pathways involved in fibrosis development at a single time point, 1 year, and exposure, 40 µg MWCNT, the lowest exposure at which fibrosis was pathologically evident. The 120 µg asbestos exposure was included to compare MWCNT-induced fibrosis with asbestos-induced fibrosis. A previously validated computational model was used to identify mRNAs with expression profiles matching the fibrosis pathology patterns from exposed mouse lungs. mRNAs that matched the pathology patterns were then input into ingenuity pathway analysis to determine potential signaling pathways and physiological disease functions inherent to MWCNT and asbestos exposure. Both MWCNT and asbestos exposure induced changes in mouse lungs regarding gene expression, cell proliferation, and survival, while MWCNT uniquely induced alterations in pathways involved in oxidative phosphorylation, mitochondrial dysfunction, and transcription. Asbestos exposure produced unique alterations in pathways involved in sustained inflammation. Although typically considered similar due to scale and fiber-like appearance, the different compositional properties inherent to either MWCNT or asbestos may play a role in their ability to induce fibrosis after pulmonary exposure.


Assuntos
Asbesto Crocidolita/toxicidade , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Administração por Inalação , Animais , Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA