Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(10): e47535, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021724

RESUMO

Background This study aimed to environmentally synthesize zinc oxide nanoparticles (ZnO-NPs) using Ananas comosus (AC) extract and evaluated their antimicrobial efficacy against Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. Methodology AC extract was combined with a zinc sulfate solution to synthesize ZnO-NPs. The NPs were characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), and energy-dispersive electron microscopy (EDX). Antimicrobial activity was assessed using the agar disc diffusion method against S. aureus, S. mutans, and E. faecalis. Results Green synthesis of ZnO-NPs with AC extract yielded NPs of different sizes and shapes. SEM analysis showed circular and conical NPs measuring up to 10 nm. EDX analysis confirmed the presence of zinc (Zn) and oxygen (O) particles. UV-visible spectroscopy indicated ZnO-NP formation with a peak at 290 nm. These NPs exhibited strong antimicrobial activity against S. aureus, with larger inhibition zones at higher concentrations, i.e., 15 mm at 100 µL. Whereas they showed low activity of 12 mm at 100 µL against S. mutans and showed no activity against E. faecalis. Conclusions Environmentally friendly synthesis of ZnO-NPs using AC extract provides an effective method for NP production. It exhibits strong antimicrobial activity against S. aureus, indicating the potential for targeted antimicrobial solutions in addressing associated infections.

2.
Neural Regen Res ; 17(10): 2213-2214, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259835
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA