Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(7): 1005-1018, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37649881

RESUMO

A set of 165 Recombinant inbred lines (RILs) derived from an interspecific cross of chickpea was used to identify QTLs for key biological nitrogen fixation (BNF) traits. The phenotyping of BNF and related traits was done at two different agroclimatic zones viz., Central plain zone (Ludhiana) and Sub-Mountainous undulating zone (Gurdaspur) for 2 consecutive rabi seasons (2018-2020). Wild parent C. reticulatum ILWC292 showed significantly high performance in terms of biological nitrogen fixation (BNF) traits over the cultivated C. arietinum GPF-2. The triple interaction of genotypes × locations × years was significant (p 0.05) for all BNF traits in parental lines. Highly significant positive correlation was obtained between grain yield and key growth and symbiotic parameters at both the sites. Phenotypic analysis revealed nodule dry weight and leghaemoglobin content as key traits for BNF efficiency and contrasting DNA bulks were constituted on the basis of these traits. Out of 535 SSR markers, 139 exhibited polymorphism between the parental lines on polyacrylamide gel electrophoresis. A total of 30 SSR markers showed polymorphism between the higher and lower bulks for nodule dry weight and leghaemoglobin content. Out of these, 20 SSRs did not show any segregation distortion in RIL population as determined by chi square analysis (p < 0.05) and were used for quantitative trait loci (QTL) analysis. Using QTL cartographer, markers- CAGM02697, CAGM09835, CAGM09777, CAGM09227, CAGM09021, CAGM08679 were found linked with QTLs for BNF. These markers can be validated further for identification of genes for BNF traits and marker assisted selection in chickpea. To the best of our knowledge this is the first report on identification of genomic regions associated with key BNF traits in chickpea across different agro-climatic zones. Supplementary information: The online version contains supplementary material available at 10.1007/s12298-023-01335-3.

2.
Front Plant Sci ; 13: 1042999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507460

RESUMO

The rising temperatures are seriously impacting the food crops, including urdbean; hence efforts are needed to identify the sources of heat tolerance in such crops to ensure global food security. In the present study, urdbean genotypes were evaluated for heat tolerance under natural outdoor for two consecutive years (2018, 2019) and subsequently in the controlled environment of the growth chamber to identify high temperature tolerant lines. The genotypes were assessed involving few physiological traits (membrane damage, chlorophyll, photosynthetic efficiency, stomatal conductance, lipid peroxidation), reproductive traits (pollen germination % and pollen viability %) and yield related traits (total number of pods plant-1, total seeds plant-1, single seed weight and seed yield plant-1). Based upon these tested traits, PantU31, Mash114, UTTARA and IPU18-04 genotypes were identified as promising genotypes for both years under heat stress condition. Further confirming heat tolerance, all these four tolerant and four sensitive genotypes were tested under controlled environment under growth chamber condition. All these four genotypes PantU31, Mash114, UTTARA and IPU18-04 showed high chlorophyll content, photosynthetic efficiency, stomatal conductance, leaf area, pods plant-1, total seeds plant-1 and low reduction in pollen germination % and pollen viability under stress heat stress condition. Moreover, yield and yield related traits viz., pods plant-1, seeds plant-1, single seed weight and seed yield plant-1 showed very strong positive correlation with pollen germination and pollen viability except electrolyte leakage and malondialdehyde content. Thus, these genotypes could be potentially used as donors for transferring heat tolerance trait to the elite yet heat-sensitive urdbean cultivars.

3.
Physiol Mol Biol Plants ; 28(7): 1437-1452, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051229

RESUMO

Drought is a major abiotic stress that drastically reduces chickpea yields. The present study was aimed to identify drought-responsive traits in chickpea by screening a recombinant inbred line population derived from an inter-specific cross between drought cultivar of GPF2 (C. arietinum L.) and drought sensitive accession of ILWC292 (C. reticulatum), at two locations in India. Twenty-one traits, including twelve morphological and physiological traits and nine root-related traits were measured under rainfed (drought-stress) and irrigated conditions (no-stress). High genotypic variation was observed among RILs for yield and root traits indicated that selection in these germplasms would be useful in achieving genetic progress. Both correlation and principal component analysis revealed that plant height, number of pods per plant, biomass, 100-seed weight, harvest index, membrane permeability index, and relative leaf water content were significantly correlated with yield under both irrigated and drought stress environments. Root length had significant positive correlations with all root-related traits except root length density in drought-stressed plants. Path analysis and multiple and stepwise regression analyses showed that number of pods per plant, biomass, and harvest index were major contributors to yield under drought stress conditions. Thus, a holistic approach across these analyses identified number of pods per plant, biomass, harvest index, and root length as key traits for improving chickpea yield through indirect selection for developing drought-tolerant cultivars. Overall, on the basis of yield components morphological and root traits, a total of 15 promising RILs were identified for their use in chickpea breeding programs for developing drought tolerant cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01218-z.

4.
Front Genet ; 13: 953898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061197

RESUMO

Chickpea yield is severely affected by drought stress, which is a complex quantitative trait regulated by multiple small-effect genes. Identifying genomic regions associated with drought tolerance component traits may increase our understanding of drought tolerance mechanisms and assist in the development of drought-tolerant varieties. Here, a total of 187 F8 recombinant inbred lines (RILs) developed from an interspecific cross between drought-tolerant genotype GPF 2 (Cicer arietinum) and drought-sensitive accession ILWC 292 (C. reticulatum) were evaluated to identify quantitative trait loci (QTLs) associated with drought tolerance component traits. A total of 21 traits, including 12 morpho-physiological traits and nine root-related traits, were studied under rainfed and irrigated conditions. Composite interval mapping identified 31 QTLs at Ludhiana and 23 QTLs at Faridkot locations for morphological and physiological traits, and seven QTLs were identified for root-related traits. QTL analysis identified eight consensus QTLs for six traits and five QTL clusters containing QTLs for multiple traits on linkage groups CaLG04 and CaLG06. The identified major QTLs and genomic regions associated with drought tolerance component traits can be introgressed into elite cultivars using genomics-assisted breeding to enhance drought tolerance in chickpea.

5.
Front Plant Sci ; 13: 941372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991418

RESUMO

The wild Cicer species is well-known for having climate-resilient and productivity-enhancing traits of interest. Therefore, wide hybridization could be used as a realistic strategy for introgressing prospective traits from wild species into the cultivated gene pool. The present study was, thus, undertaken to evaluate F7 chickpea interspecific derivatives derived from Cicer reticulatum Ladiz. and C. echinospermum P. H. Davis wild annual Cicer species. As a result, a set of six interspecific crosses were advanced using the single seed descent (SSD) method of breeding. The F7 generation of these crosses was assessed in two diverse agro-ecological regions of India. The data revealed a wide range of variation with respect to seed yield and its important component traits, which resulted in the identification of the most promising derivatives carrying desirable characters as indicated by range, mean, and coefficient of variation. Further, fruitful heterosis was also estimated as promising selection criteria for identifying superior lines for earliness and high seed yield, including resistance against prevailing stresses (ascochyta blight, botrytis gray mold, dry root rot, and fusarium wilt). The superior derivatives carrying putative characters could be recommended for further breeding and selection of genetic materials for developing suitable genotypes.

6.
Front Genet ; 13: 924287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991541

RESUMO

Pusa 391, a mega desi chickpea variety with medium maturity duration is extensively cultivated in the Central Zone of India. Of late, this variety has become susceptible to Fusarium wilt (FW), which has drastic impact on its yield. Presence of variability in the wilt causing pathogen, Fusarium oxysporum f.sp. ciceri (foc) across geographical locations necessitates the role of pyramiding for FW resistance for different races (foc 1,2,3,4 and 5). Subsequently, the introgression lines developed in Pusa 391 genetic background were subjected to foreground selection using three SSR markers (GA16, TA 27 and TA 96) while 48 SSR markers uniformly distributed on all chromosomes, were used for background selection to observe the recovery of recurrent parent genome (RPG). BC1F1 lines with 75-85% RPG recovery were used to generate BC2F1. The plants that showed more than 90% RPG recovery in BC2F1 were used for generating BC3F1. The plants that showed more than 96% RPG recovery were selected and selfed to generate BC3F3. Multi-location evaluation of advanced introgression lines (BC2F3) in six locations for grain yield (kg/ha), days to fifty percent flowering, days to maturity, 100 seed weight and disease incidence was done. In case of disease incidence, the genotype IL1 (BGM 20211) was highly resistant to FW in Junagarh, Indore, New Delhi, Badnapur and moderately resistant at Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM20211) was the most stable genotype at Junagadh, Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM 20211) and IL4(BGM 20212) were the top performers in yield and highly stable across six environments and were nominated for Advanced Varietal Trials (AVT) of AICRP (All India Coordinated Research Project on Chickpea) in 2018-19. BGM20211 and BGM 20212 recorded 29 and 28.5% average yield gain over the recurrent parent Pusa 391, in the AVT-1 and AVT-2 over five environments. Thus, BGM20211 was identified for release and notified as Pusa Manav/Pusa Chickpea 20211 for Madhya Pradesh, Gujarat and Maharashtra, Southern Rajasthan, Bundhelkhand region of Uttar Pradesh states by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India (Gazette notification number S.O.500 (E) dt. 29-1-2021).Such pyramided lines give resilience to multiple races of fusarium wilt with added yield advantage.

7.
Front Genet ; 13: 847647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495135

RESUMO

The gram pod borer Helicoverpa armigera is a major constraint to chickpea (Cicer arietinum L.) production worldwide, reducing crop yield by up to 90%. The constraint is difficult to overcome as chickpea germplasm including wild species either lacks pod borer resistance or if possessing resistance is cross-incompatible. This study describes conversion of elite but pod borer-susceptible commercial chickpea cultivars into resistant cultivars through introgression of cry1Ac using marker-assisted backcross breeding. The chickpea cultivars (PBG7 and L552) were crossed with pod borer-resistant transgenic lines (BS 100B and BS 100E) carrying cry1Ac that led to the development of BC1F1, BC1F2, BC1F3, BC2F1, BC2F2, and BC2F3 populations from three cross combinations. The foreground selection revealed that 35.38% BC1F1 and 8.4% BC1F2 plants obtained from Cross A (PBG7 × BS 100B), 50% BC1F1 and 76.5% BC1F2 plants from Cross B (L552 × BS 100E), and 12.05% BC2F2 and 82.81% (average) BC2F3 plants derived from Cross C (PBG7 × BS 100E) carried the cry1Ac gene. The bioassay of backcross populations for toxicity to H. armigera displayed up to 100% larval mortality. BC1F1 and BC1F2 populations derived from Cross B and BC2F3 population from Cross C segregated in the Mendelian ratio for cry1Ac confirmed inheritance of a single copy of transgene, whereas BC1F1 and BC1F2 populations obtained from Cross A and BC2F2 population from Cross C exhibited distorted segregation ratios. BC1F1 plants of Cross A and Cross B accumulated Cry1Ac protein ranging from 11.03 to 11.71 µgg-1 in leaf tissue. Cry1Ac-positive BC2F2 plants from Cross C demonstrated high recurrent parent genome recovery (91.3%) through background selection using SSR markers and phenome recovery of 90.94%, amongst these 30% plants, were homozygous for transgene. The performance of BC2F3 progenies derived from homozygous plants was similar to that of the recurrent parent for main agronomic traits, such as number of pods and seed yield per plant. These progenies are a valuable source for H. armigera resistance in chickpea breeding programs.

8.
Front Plant Sci ; 13: 762002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548283

RESUMO

Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.

9.
Protoplasma ; 259(3): 775-788, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34463826

RESUMO

Chickpea, an important food legume, is primarily grown on marginal soils with low soil fertility. Although chickpea can fix N, soil phosphorus (P) deficiency in crop growing areas is a major limiting factor for chickpea production. This study was undertaken to evaluate twenty-five chickpea cultivars for morpho-physiological traits and yield under low and normal phosphorous conditions. Based on morpho-physiological traits such as length and area of roots and shoots, root length density, root and shoot biomass, chlorophyll content, number of nodules and root tips, tolerance indices and yield, these cultivars were characterised into susceptible (ICC67, ICC1915, ICC2593, ICC5337, ICC5879, ICC8950, ICC13441, ICC1483, ICC15606 and ICC15888), tolerant (ICC10755, IG72070, ICCV97105, ICCV2, ICCV92809, ICCV92337 and ICCV95423) and the remaining cultivars were moderately tolerant to phosphorous-deficit conditions. Higher activities of enzymes of phosphorous metabolism such as acid phosphatase and phytase in roots and nodules of tolerant chickpea cultivars (ICCV97105, ICCV92337, ICCV95423) as compared to susceptible cultivars (ICC67, ICC15606, ICC15888) at different developmental stages might be attributing to their better performance for growth parameters and productivity traits under phosphorous-deficit conditions.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Secas , Genótipo , Fósforo/metabolismo , Solo
11.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34344845

RESUMO

A unique trait, i.e. yellowing of apical/young leaves in response to low temperature and high relative humidity was identified in a chickpea genotype, ICCX110069. To determine inheritance pattern of this trait, ICCX110069 was crossed to four other genotypes, GL14050, GL14049, GL14059 and SAGL152117, that exhibited normal green apical leaves under similar environmental conditions. The F1, F2, F3, BC1F1 and BC1F2 generations were generated. A ratio of 13 normal green leaf: three yellow leaf was found to be the best fit, indicated digenic gene action with suppressor effect of normal green leaf over the expression of yellowing of apical/young leaf trait. The chlorophyll content was significantly lower, while guaiacol peroxidase activity was significantly higher in yellow leaves of ICCX110069 as compared to green leaves of the same genotype and of GL14049, indicating the competence of antioxidative defence mechanism involved with the expression of this trait.


Assuntos
Clorofila/metabolismo , Cicer/genética , Padrões de Herança , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Temperatura Baixa , Genótipo , Umidade
12.
Breed Sci ; 71(2): 229-239, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34377071

RESUMO

Ascochyta blight (AB) and botrytis grey mould (BGM) are the most devastating fungal diseases of chickpea worldwide. The wild relative of chickpea, C. reticulatum acc. ILWC 292 was found resistant to BGM whereas, GPF2 (Cicer arietinum L.) is resistant to AB. A total of 187 F8 Recombinant Inbred Lines (RILs) developed from an inter-specific cross of GPF2 × C. reticulatum acc. ILWC 292 were used to identify quantitative trait loci (QTLs) responsible for resistance to AB and BGM. RILs along with parents were evaluated under artificial epiphytotic field/laboratory conditions for two years. Highly significant differences (P < 0.001) were observed for reaction to both pathogens in both years. Parents and RILs were genotyped-by-sequencing to identify genome wide single nucleotide polymorphism (SNPs). A total of 1365 filtered and parental polymorphic SNPs were used for linkage map construction, of which, 673 SNPs were arranged on eight linkage groups. Composite interval mapping revealed three QTLs for AB and four QTLs for BGM resistance. Out of which, two QTLs for AB and three QTLs for BGM were consistent in both years. These QTLs can be targeted for further fine mapping for deployment of resistance to AB and BGM in elite chickpea cultivars using marker-assisted-selection.

13.
PLoS One ; 16(8): e0254957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370732

RESUMO

Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits. The pooled ANOVA for both locations for the traits namely days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), pods per plant (NPP), biomass (BIO), grain yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC) and pollen viability (PV)) showed a highly significant difference in RILs. The phenotyping data coupled with the genetic map comprising of 1365 ddRAD-Seq based SNP markers were used for identifying the QTLs for heat tolerance. Composite interval mapping provided a total of 28 and 23 QTLs, respectively at Ludhiana and Faridkot locations. Of these, 13 consensus QTLs for DG, DFI, DFF, DHF, PH, YLD, and MPI have been identified at both locations. Four QTL clusters containing QTLs for multiple traits were identified on the same genomic region at both locations. Stable QTLs for days to flowering can be one of the major factors for providing heat tolerance as early flowering has an advantage of more seed setting due to a comparatively longer reproductive period. Identified QTLs can be used in genomics-assisted breeding to develop heat stress-tolerant high yielding chickpea cultivars.


Assuntos
Cicer/genética , Endogamia , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Recombinação Genética/genética , Termotolerância/genética , Resposta ao Choque Térmico/genética , Índia , Razão de Chances , Fenótipo , Reprodução/genética , Temperatura
14.
Physiol Mol Biol Plants ; 27(4): 747-767, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33967460

RESUMO

Heat is a major abiotic stress that drastically reduces chickpea yield. This study aimed to identify heat-responsive traits to sustain crop productivity by screening a recombinant inbred line (RILs) population at two locations in India (Ludhiana and Faridkot). The RIL population was derived from an inter-specific cross between heat-tolerant genotype GPF 2 (C. arietinum L.) and heat sensitive accession ILWC 292 (C. reticulatum). The pooled analysis of variance showed highly significant differences for all the traits in RILs and most of the traits were significantly affected by heat stress at both locations. High values of genotypic coefficient of variation (19.52-38.53%), phenotypic coefficient of variation (20.29-39.85%), heritability (92.50-93.90%), and genetic advance as a percentage of mean (38.68-76.74%) have been observed for plant height, number of pods per plant, biomass, yield, and hundred seed weight across the heat stress environments. Association studies and principal component analysis showed a significant positive correlation of plant height, number of pods per plant, biomass, hundred seed weight, harvest index, relative leaf water content, and pollen viability with yield under both timely-sown and late-sown conditions. Path analysis revealed that biomass followed by harvest index was the major contributor to yield among the environments. Both step-wise and multiple regression analyses concluded that number of pods per plant, biomass and harvest index consistently showed high level of contribution to the total variation in yield under both timely-sown and late-sown conditions. Thus, the holistic approach of these analyses illustrated that the promising traits provide a framework for developing heat-tolerant cultivars in chickpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00977-5.

15.
Front Genet ; 11: 584527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381148

RESUMO

Chickpea (Cicer arietinum L.) is an economically important food legume grown in arid and semi-arid regions of the world. Chickpea is cultivated mainly in the rainfed, residual moisture, and restricted irrigation condition. The crop is always prone to drought stress which is resulting in flower drop, unfilled pods, and is a major yield reducer in many parts of the world. The present study elucidates the association between candidate gene and morpho-physiological traits for the screening of drought tolerance in chickpea. Abiotic stress-responsive gene Dehydrin (DHN) was identified in some of the chickpea genotypes based on the sequence similarity approach to play a major role in drought tolerance. Analysis of variance revealed a significant effect of drought on relative water content, membrane stability index, plant height, and yield traits. The genotypes Pusa1103, Pusa362, and ICC4958 were found most promising genotypes for drought tolerance as they maintained the higher value of osmotic regulations and yield characters. The results were further supported by a sequence similarity approach for the dehydrin gene when analyzed for the presence of single nucleotide polymorphisms (SNPs) and indels. Homozygous indels and single nucleotide polymorphisms were found after the sequencing in some of the selected genotypes.

16.
PLoS One ; 15(10): e0240589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33075085

RESUMO

Chickpea (Cicer arietinum L.) is the second largest pulse crop grown worldwide and ascochyta blight caused by Ascochyta rabiei (Pass.) Labr. is the most devastating disease of the crop in all chickpea growing areas across the continents. The pathogen A. rabiei is highly variable. The resistant sources available are not sufficient and new sources needs to be identified from time to time as resistance breakdown in existing chickpea varieties is very frequent due to fast evolution of new pathotypes of the pathogen. Therefore, this work was undertaken to evaluate the existing chickpea germplasm diversity conserved in Indian National Genebank against the disease under artificial epiphytotic conditions. An artificial standard inoculation procedure was followed for uniform spread of the pathogen. During the last five winter seasons from 2014-15 to 2018-19, a total of 1,970 accessions have been screened against the disease and promising accessions were identified and validated. Screening has resulted in identification of some promising chickpea accessions such as IC275447, IC117744, EC267301, IC248147 and EC220109 which have shown the disease resistance (disease severity score ≤3) in multiple seasons and locations. Promising accessions can serve as the potential donors in chickpea improvement programs. The frequency of resistant and moderately resistant type accessions was comparatively higher in accessions originated from Southwest Asian countries particularly Iran and Syria than the accessions originated from Indian sub-continent. Further large scale screening of chickpea germplasm originated from Southwest Asia may result in identifying new resistant sources for the disease.


Assuntos
Cicer/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Cicer/microbiologia , Cruzamentos Genéticos , Irã (Geográfico) , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Síria
17.
Physiol Mol Biol Plants ; 26(7): 1399-1410, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647457

RESUMO

The study aimed at introgression of productivity enhancing traits and resistance to pod borer and Phytophthora stem blight from wild to cultivated pigeonpea through an inter-specific cross between Cajanus scarabaeoides (ICP 15683) and C. cajan (ICPL 20329). Progenies derived from the direct segregating (without backcross) population and backcross population were evaluated for yield and yield contributing traits namely fruiting branches and pods plant-1 and 100-seed weight. Introgressed progenies having higher fruiting branches, pods and yield plant-1 compared to the cultivated parent were identified in both populations. A few progenies with significantly shorter plant height, early flowering and early maturity as compared to both cultivated and wild parents were also recovered in both populations. Progenies from both the populations were identified with higher resistance to pod borer and Phytophthora stem blight. However, some introgressed progenies having lower seed weight and seeds per pod were also recovered. The promising progenies are currently being used in the breeding programme to develop cultivars with improved productivity and resistance to pod borer and Phytophthora stem blight.

18.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709160

RESUMO

Globally, chickpea production is severely affected by salinity stress. Understanding the genetic basis for salinity tolerance is important to develop salinity tolerant chickpeas. A recombinant inbred line (RIL) population developed using parental lines ICCV 10 (salt-tolerant) and DCP 92-3 (salt-sensitive) was screened under field conditions to collect information on agronomy, yield components, and stress tolerance indices. Genotyping data generated using Axiom®CicerSNP array was used to construct a linkage map comprising 1856 SNP markers spanning a distance of 1106.3 cM across eight chickpea chromosomes. Extensive analysis of the phenotyping and genotyping data identified 28 quantitative trait loci (QTLs) explaining up to 28.40% of the phenotypic variance in the population. We identified QTL clusters on CaLG03 and CaLG06, each harboring major QTLs for yield and yield component traits under salinity stress. The main-effect QTLs identified in these two clusters were associated with key genes such as calcium-dependent protein kinases, histidine kinases, cation proton antiporter, and WRKY and MYB transcription factors, which are known to impart salinity stress tolerance in crop plants. Molecular markers/genes associated with these major QTLs, after validation, will be useful to undertake marker-assisted breeding for developing better varieties with salinity tolerance.


Assuntos
Cicer/genética , Genes de Plantas , Mapeamento Cromossômico , Cicer/fisiologia , Família Multigênica , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal
19.
Biol Futur ; 71(1-2): 137-146, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34554520

RESUMO

Twenty chickpea cultivars were germinated under control and different levels of salt stress induced by sodium chloride and out of these, three desi (PDG 3, GL 12003, C 106) and two kabuli (FLIP-08-125-C and GLK 28127) cultivars were selected on the basis of embryonic axis growth, biomass, salinity stress tolerance index. Antioxidative enzymes, non-enzymatic antioxidants proline and proline metabolizing enzymes and free radical scavenging activities were estimated in embryonic axes of these selected cultivars under control and salt stressed conditions. Higher activities of catalase and Δ1-pyrroline-carboxylate synthetase (P5CS) and sustained activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in embryonic axis along with higher SOD and glutathione reductase and maintained APX in cotyledons might be mediating salt stress tolerance in kabuli cultivar FLIP-08-125-C. Higher proline content, enhanced P5CS activity and decreased proline dehydrogenase activity in embryonic axis along with higher free radical scavenging activities both in cotyledons and embryonic axis in desi cultivar PDG 3 might be mediating salt stress tolerance by maintaining osmotic balance and reducing oxidative damage.


Assuntos
Cicer/genética , Cicer/fisiologia , Germinação/efeitos dos fármacos , Tolerância ao Sal/genética , Sementes/efeitos dos fármacos , Sementes/fisiologia
20.
Proc Natl Acad Sci U S A ; 116(30): 15200-15209, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285337

RESUMO

Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.


Assuntos
Cicer/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Mesorhizobium/genética , Consórcios Microbianos/genética , Evolução Biológica , Conjugação Genética , Mesorhizobium/classificação , Metagenômica/métodos , Fixação de Nitrogênio/fisiologia , Filogenia , Filogeografia , Solo/classificação , Microbiologia do Solo , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA