Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Immunol ; 15: 1323198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384463

RESUMO

One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Imunoterapia
2.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37913894

RESUMO

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Smad3/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 15(5): 1219-1246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758798

RESUMO

BACKGROUND & AIMS: Loss of AT-rich interactive domain-containing protein 1A (ARID1A) fosters acinar-to-ductal metaplasia (ADM) and pancreatic carcinogenesis by down-regulating transcription programs controlling acinar cell identity. However, how ARID1A reacts to metaplasia-triggering environmental cues remains elusive. Here, we aimed to elucidate the role of ARID1A in controlling ductal pancreatic gene signatures and deciphering hierarchical signaling cues determining ARID1A-dependent chromatin regulation during acinar cell reprogramming. METHODS: Acinar cell explants with differential ARID1A status were subjected to genome-wide expression analyses. The impact of epidermal growth factor receptor (EGFR) signaling, NFATc1 activity, and ARID1A status on acinar reprogramming processes were characterized by ex vivo ADM assays and transgenic mouse models. EGFR-dependent ARID1A chromatin binding was studied by chromatin immunoprecipitation sequencing analysis and cellular fractionation. RESULTS: EGFR signaling interferes with ARID1A-dependent transcription by inducing genome-wide ARID1A displacement, thereby phenocopying ARID1A loss-of-function mutations and inducing a shift toward ADM permissive ductal transcription programs. Moreover, we show that EGFR signaling is required to push ARID1A-deficient acinar cells toward a metaplastic phenotype. Mechanistically, we identified the transcription factor nuclear factor of activated T cells 1 (NFATc1) as the central regulatory hub mediating both EGFR signaling-induced genomic ARID1A displacement and the induction of ADM-promoting gene signatures in the absence of ARID1A. Consequently, pharmacologic inhibition of NFATc1 or its depletion in transgenic mice not only preserves genome-wide ARID1A occupancy, but also attenuates acinar metaplasia led by ARID1A loss. CONCLUSIONS: Our data describe an intimate relationship between environmental signaling and chromatin remodeling in orchestrating cell fate decisions in the pancreas, and illustrate how ARID1A loss influences transcriptional regulation in acinar cell reprogramming.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Células Acinares/metabolismo , Cromatina , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Reprogramação Celular , Fatores de Transcrição/genética , Receptores ErbB/genética , Camundongos Transgênicos , Metaplasia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
5.
Trends Cancer ; 8(12): 1060-1071, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36117109

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is clinically challenging due to late diagnosis and resistance to therapy. Two major PDAC subtypes have been defined based on malignant epithelial cell gene expression profiles; the basal-like/squamous subtype is associated with a worse prognosis and therapeutic resistance as opposed to the classical subtype. Subtype specification is not binary, consistent with plasticity of malignant cell phenotype. PDAC heterogeneity and plasticity reflect partly malignant cell-intrinsic transcriptional and epigenetic regulation. However, the stromal and immune compartments of the tumor microenvironment (TME) also determine disease progression and therapy response. It is evident that integration of intrinsic and extrinsic factors can dictate subtype heterogeneity, and thus, delineating the pathways involved can help to reprogram PDAC towards a classical/druggable subtype.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Epigênese Genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
6.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993361

RESUMO

Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.


Assuntos
Orientação de Axônios , Neoplasias Pancreáticas , Receptores de Superfície Celular , Orientação de Axônios/genética , Orientação de Axônios/fisiologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptor Tirosina Quinase Axl
7.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884510

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.

8.
Gut ; 71(12): 2561-2573, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35365570

RESUMO

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) can persist in the stage of simple hepatic steatosis or progress to steatohepatitis (NASH) with an increased risk for cirrhosis and cancer. We examined the mechanisms controlling the progression to severe NASH in order to develop future treatment strategies for this disease. DESIGN: NFATc1 activation and regulation was examined in livers from patients with NAFLD, cultured and primary hepatocytes and in transgenic mice with differential hepatocyte-specific expression of the transcription factor (Alb-cre, NFATc1c.a . and NFATc1Δ/Δ ). Animals were fed with high-fat western diet (WD) alone or in combination with tauroursodeoxycholic acid (TUDCA), a candidate drug for NAFLD treatment. NFATc1-dependent ER stress-responses, NLRP3 inflammasome activation and disease progression were assessed both in vitro and in vivo. RESULTS: NFATc1 expression was weak in healthy livers but strongly induced in advanced NAFLD stages, where it correlates with liver enzyme values as well as hepatic inflammation and fibrosis. Moreover, high-fat WD increased NFATc1 expression, nuclear localisation and activation to promote NAFLD progression, whereas hepatocyte-specific depletion of the transcription factor can prevent mice from disease acceleration. Mechanistically, NFATc1 drives liver cell damage and inflammation through ER stress sensing and activation of the PERK-CHOP unfolded protein response (UPR). Finally, NFATc1-induced disease progression towards NASH can be blocked by TUDCA administration. CONCLUSION: NFATc1 stimulates NAFLD progression through chronic ER stress sensing and subsequent activation of terminal UPR signalling in hepatocytes. Interfering with ER stress-responses, for example, by TUDCA, protects fatty livers from progression towards manifest NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/metabolismo , Camundongos Transgênicos , Progressão da Doença , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo
9.
Adv Healthc Mater ; 11(11): e2102345, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114730

RESUMO

Despite intensive research and progress in personalized medicine, pancreatic ductal adenocarcinoma remains one of the deadliest cancer entities. Pancreatic duct-like organoids (PDLOs) derived from human pluripotent stem cells (PSCs) or pancreatic cancer patient-derived organoids (PDOs) provide unique tools to study early and late stage dysplasia and to foster personalized medicine. However, such advanced systems are neither rapidly nor easily accessible and require an in vivo niche to study tumor formation and interaction with the stroma. Here, the establishment of the porcine urinary bladder (PUB) is revealed as an advanced organ culture model for shaping an ex vivo pancreatic niche. This model allows pancreatic progenitor cells to enter the ductal and endocrine lineages, while PDLOs further mature into duct-like tissue. Accordingly, the PUB offers an ex vivo platform for earliest pancreatic dysplasia and cancer if PDLOs feature KRASG12D mutations. Finally, it is demonstrated that PDOs-on-PUB i) resemble primary pancreatic cancer, ii) preserve cancer subtypes, iii) enable the study of niche epithelial crosstalk by spiking in pancreatic stellate and immune cells into the grafts, and finally iv) allow drug testing. In summary, the PUB advances the existing pancreatic cancer models by adding feasibility, complexity, and customization at low cost and high flexibility.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células-Tronco Pluripotentes , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Suínos , Bexiga Urinária , Neoplasias Pancreáticas
10.
Cells ; 10(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34943970

RESUMO

BACKGROUND: The Nuclear Factor of Activated T-cells 1 (NFATc1) transcription factor and the methyltransferase Enhancer of Zeste Homolog 2 (EZH2) significantly contribute to the aggressive phenotype of pancreatic ductal adenocarcinoma (PDAC). Herein, we aimed at dissecting the mechanistic background of their interplay in PDAC progression. METHODS: NFATc1 and EZH2 mRNA and protein expression and complex formation were determined in transgenic PDAC models and human PDAC specimens. NFATc1 binding on the Ezh2 gene and the consequences of perturbed NFATc1 expression on Ezh2 transcription were explored by Chromatin Immunoprecipitation (ChIP) and upon transgenic or siRNA-mediated interference with NFATc1 expression, respectively. Integrative analyses of RNA- and ChIP-seq data was performed to explore NFATc1-/EZH2-dependent gene signatures. RESULTS: NFATc1 targets the Ezh2 gene for transcriptional activation and biochemically interacts with the methyltransferase in murine and human PDAC. Surprisingly, our genome-wide binding and expression analyses do not link the protein complex to joint gene regulation. In contrast, our findings provide evidence for chromatin-independent functions of the NFATc1:EZH2 complex and reveal posttranslational EZH2 phosphorylation at serine 21 as a prerequisite for robust complex formation. CONCLUSION: Our findings disclose a previously unknown NFATc1-EZH2 axis operational in the pancreas and provide mechanistic insights into the conditions fostering NFATc1:EZH2 complex formation in PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fatores de Transcrição NFATC/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/genética , Cromatina/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/genética , Transativadores/genética
11.
mSystems ; 6(4): e0075021, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427527

RESUMO

The advent of high-throughput sequencing techniques has recently provided an astonishing insight into the composition and function of the human microbiome. Next-generation sequencing (NGS) has become the gold standard for advanced microbiome analysis; however, 3rd generation real-time sequencing, such as Oxford Nanopore Technologies (ONT), enables rapid sequencing from several kilobases to >2 Mb with high resolution. Despite the wide availability and the enormous potential for clinical and translational applications, ONT is poorly standardized in terms of sampling and storage conditions, DNA extraction, library creation, and bioinformatic classification. Here, we present a comprehensive analysis pipeline with sampling, storage, DNA extraction, library preparation, and bioinformatic evaluation for complex microbiomes sequenced with ONT. Our findings from buccal and rectal swabs and DNA extraction experiments indicate that methods that were approved for NGS microbiome analysis cannot be simply adapted to ONT. We recommend using swabs and DNA extractions protocols with extended washing steps. Both 16S rRNA and metagenomic sequencing achieved reliable and reproducible results. Our benchmarking experiments reveal thresholds for analysis parameters that achieved excellent precision, recall, and area under the precision recall values and is superior to existing classifiers (Kraken2, Kaiju, and MetaMaps). Hence, our workflow provides an experimental and bioinformatic pipeline to perform a highly accurate analysis of complex microbial structures from buccal and rectal swabs. IMPORTANCE Advanced microbiome analysis relies on sequencing of short DNA fragments from microorganisms like bacteria, fungi, and viruses. More recently, long fragment DNA sequencing of 3rd generation sequencing has gained increasing importance and can be rapidly conducted within a few hours due to its potential real-time sequencing. However, the analysis and correct identification of the microbiome relies on a multitude of factors, such as the method of sampling, DNA extraction, sequencing, and bioinformatic analysis. Scientists have used different protocols in the past that do not allow us to compare results across different studies and research fields. Here, we provide a comprehensive workflow from DNA extraction, sequencing, and bioinformatic workflow that allows rapid and accurate analysis of human buccal and rectal swabs with reproducible protocols. This workflow can be readily applied by many scientists from various research fields that aim to use long-fragment microbiome sequencing.

12.
Front Oncol ; 11: 642603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178628

RESUMO

Missense p53 mutations (mutp53) occur in approx. 70% of pancreatic ductal adenocarcinomas (PDAC). Typically, mutp53 proteins are aberrantly stabilized by Hsp90/Hsp70/Hsp40 chaperone complexes. Notably, stabilization is a precondition for specific mutp53 alleles to acquire powerful neomorphic oncogenic gain-of-functions (GOFs) that promote tumor progression in solid cancers mainly by increasing invasion and metastasis. In colorectal cancer (CRC), we recently established that the common hotspot mutants mutp53R248Q and mutp53R248W exert GOF activities by constitutively binding to and hyperactivating STAT3. This results in increased proliferation and invasion in an autochthonous CRC mouse model and correlates with poor survival in patients. Comparing a panel of p53 missense mutations in a series of homozygous human PDAC cell lines, we show here that, similar to CRC, the mutp53R248W protein again undergoes a strong Hsp90-mediated stabilization and selectively promotes migration. Highly stabilized mutp53 is degradable by the Hsp90 inhibitors Onalespib and Ganetespib, and correlates with growth suppression, possibly suggesting therapeutic vulnerabilities to target GOF mutp53 proteins in PDAC. In response to mutp53 depletion, only mutp53R248W harboring PDAC cells show STAT3 de-phosphorylation and reduced migration, again suggesting an allele-specific GOF in this cancer entity, similar to CRC. Moreover, mutp53R248W also exhibits the strongest constitutive complex formation with phosphorylated STAT3. The selective mutp53R248W GOF signals through enhancing the STAT3 axis, which was confirmed since targeting STAT3 by knockdown or pharmacological inhibition phenocopied mutp53 depletion and reduced cell viability and migration preferentially in mutp53R248W-containing PDAC cells. Our results confirm that mutp53 GOF activities are allele specific and can span across tumor entities.

13.
Nat Cancer ; 2(11): 1185-1203, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122059

RESUMO

Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Prognóstico , Fatores de Transcrição/genética , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Neoplasias Pancreáticas
14.
Cancer Res ; 80(21): 4620-4632, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32907838

RESUMO

Recent studies have thoroughly described genome-wide expression patterns defining molecular subtypes of pancreatic ductal adenocarcinoma (PDAC), with different prognostic and predictive implications. Although the reversible nature of key regulatory transcription circuits defining the two extreme PDAC subtype lineages "classical" and "basal-like" suggests that subtype states are not permanently encoded but underlie a certain degree of plasticity, pharmacologically actionable drivers of PDAC subtype identity remain elusive. Here, we characterized the mechanistic and functional implications of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in controlling PDAC plasticity, dedifferentiation, and molecular subtype identity. Utilization of transgenic PDAC models and human PDAC samples linked EZH2 activity to PDAC dedifferentiation and tumor progression. Combined RNA- and chromatin immunoprecipitation sequencing studies identified EZH2 as a pivotal suppressor of differentiation programs in PDAC and revealed EZH2-dependent transcriptional repression of the classical subtype defining transcription factor Gata6 as a mechanistic basis for EZH2-dependent PDAC progression. Importantly, genetic or pharmacologic depletion of EZH2 sufficiently increased GATA6 expression, thus inducing a gene signature shift in favor of a less aggressive and more therapy-susceptible, classical PDAC subtype state. Consistently, abrogation of GATA6 expression in EZH2-deficient PDAC cells counteracted the acquisition of classical gene signatures and rescued their invasive capacities, suggesting that GATA6 derepression is critical to overcome PDAC progression in the context of EZH2 inhibition. Together, our findings link the EZH2-GATA6 axis to PDAC subtype identity and uncover EZH2 inhibition as an appealing strategy to induce subtype-switching in favor of a less aggressive PDAC phenotype. SIGNIFICANCE: This study highlights the role of EZH2 in PDAC progression and molecular subtype identity and suggests EZH2 inhibition as a strategy to recalibrate GATA6 expression in favor of a less aggressive disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4620/F1.large.jpg.


Assuntos
Carcinoma Ductal Pancreático/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo
15.
Front Immunol ; 11: 1402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765498

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Microambiente Tumoral/genética
16.
Cancers (Basel) ; 12(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698524

RESUMO

BACKGROUND: The tumor microenvironment (TME) is composed of fibro-inflammatory cells and extracellular matrix (ECM) components. However, the exact contribution of the various TME compartments towards therapeutic response is unknown. Here, we aim to dissect the specific contribution of tumor-associated macrophages (TAMs) towards drug delivery and response in pancreatic ductal adenocarcinoma (PDAC). METHODS: The effect of gemcitabine was assessed in human and murine macrophages, human pancreatic stellate cells (hPSCs), and tumor cells (L3.6pl, BxPC3 and KPC) in vitro. The drug metabolism of gemcitabine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Preclinical studies were conducted using KrasG12D;p48-Cre and KrasG12D;p53172H;Pdx-Cre mice to investigate gemcitabine delivery at different stages of tumor progression and upon pharmacological TAM depletion. RESULTS: Gemcitabine accumulation was significantly increased in murine PDAC tissue compared to pancreatic intraepithelial neoplasia (PanIN) lesions and healthy control pancreas tissue. In vitro, macrophages accumulated and rapidly metabolized gemcitabine resulting in a significant drug scavenging effect for gemcitabine. Finally, pharmacological TAM depletion enhanced therapeutic response to gemcitabine in tumor-bearing KPC mice. CONCLUSION: Macrophages rapidly metabolize gemcitabine in vitro, and pharmacological depletion improves the therapeutic response to gemcitabine in vivo. Our study supports the notion that TAMs might be a promising therapeutic target in PDAC.

17.
Physiol Rev ; 100(4): 1707-1751, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32297835

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.


Assuntos
Adenocarcinoma/fisiopatologia , Neoplasias Pancreáticas/fisiopatologia , Microambiente Tumoral/fisiologia , Adenocarcinoma/tratamento farmacológico , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico
18.
EBioMedicine ; 48: 161-168, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31597597

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterised by extensive matrix deposition that has been implicated in impaired drug delivery and therapeutic resistance. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates collagen deposition and is highly upregulated in the activated stroma subtype with poor prognosis in PDAC patients. METHODS: KrasG12D;p48-Cre;SPARC-/- (KC-SPARC-/-) and KrasG12D;p48-Cre;SPARCWT (KC-SPARCWT) were generated and analysed at different stages of carcinogenesis by histological grading, immunohistochemistry for epithelial and stromal markers, survival and preclinical analysis. Pharmacokinetic and pharmacodynamic studies were conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunohistochemistry following gemcitabine treatment (100 mg/kg) in vivo. FINDINGS: Global genetic ablation of SPARC in a KrasG12D driven mouse model resulted in significantly reduced overall and mature collagen deposition around early and advanced pancreatic intraepithelial neoplasia (PanIN) lesions and in invasive PDAC (p < .001). However, detailed pathological scoring and molecular analysis showed no effects on PanIN to PDAC progression, vessel density (CD31), tumour incidence, grading or metastatic frequency. Despite comparable tumour kinetics, ablation of SPARC resulted in a significantly shortened survival in KC-SPARC-/- mice (280 days versus 485 days, p < .03, log-rank-test). Using LC-MS/MS, we show that SPARC dependent collagen deposition does not affect intratumoural gemcitabine accumulation or immediate therapeutic response in tumour bearing KC-SPARCWT and KC-SPARC-/-mice. INTERPRETATION: Global SPARC ablation reduces the collagen-rich microenvironment in murine PDAC. Moreover, global SPARC depletion did not affect tumour growth kinetics, grading or metastatic frequency. Notably, the dense-collagen matrix did not restrict access of gemcitabine to the tumour. These findings may have direct translational implications in clinical trial design.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Colágeno/metabolismo , Desoxicitidina/análogos & derivados , Osteonectina/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Osteonectina/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Gencitabina
19.
Immunobiology ; 224(5): 625-631, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31519376

RESUMO

The complement system is an important humoral immune surveillance mechanism against tumours. However, many malignant tumours are resistant to complement mediated lysis. Here, we report secretion of complement factor H related protein 5 (FHR5) by primary tumour cells derived from Glioblastoma multiforme (GBM) patients. We investigated whether the secreted FHR5 exhibited functional activity similar to factor H, including inhibition of complement mediated lysis, acting as a co-factor for factor I mediated cleavage of C3b, and decay acceleration of C3 convertase. Immunoblotting analysis of primary GBM cells (B30, B31 and B33) supernatant showed the active secretion of FHR5, but not of Factor H. ELISA revealed that the secretion of soluble GBM-FHR5 by cultured GBM cells increased in a time-dependent manner. Primary GBM-FHR5 inhibited complement mediated lysis, possessed co-factor activity for factor I mediated cleavage and displayed decay acceleration of C3 convertase. In summary, we detected the secretion of FHR5 by primary GBM cells B30, B31 and B33. The results demonstrated that GBM-FHR5 shares biological function with FH as a mechanism primary GBM cells potentially use to resist complement mediated lysis.


Assuntos
Proteínas do Sistema Complemento/biossíntese , Glioblastoma/metabolismo , Biomarcadores , Ativação do Complemento , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Glioblastoma/imunologia , Hemólise/imunologia , Humanos , Proteólise
20.
Cells ; 8(6)2019 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181844

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to standard chemo- and radiotherapy. Recently, a new class of non-platinum-based halogenated molecules (called FMD compounds) was discovered that selectively kills cancer cells. Here, we investigate the potential of 1,2-Diamino-4,5-dibromobenzene (2Br-DAB) in combination with standard chemotherapy and radiotherapy in murine and human PDAC. Methods: Cell viability and colony formation was performed in human (Panc1, BxPC3, PaTu8988t, MiaPaCa) and three murine LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) pancreatic cancer cell lines. In vivo, preclinical experiments were conducted in LSL-KrasG12D/+;p48-Cre (KC) and KPC mice using 2Br-DAB (7 mg/kg, i.p.), +/- radiation (10 × 1.8 Gy), gemcitabine (100 mg/kg, i.p.), or a combination. Tumor growth and therapeutic response were assessed by high-resolution ultrasound and immunohistochemistry. Results: 2Br-DAB significantly reduced cell viability in human and murine pancreatic cancer cell lines in a dose-dependent manner. In particular, colony formation in human Panc1 cells was significantly decreased upon 25 µM 2Br-DAB + radiation treatment compared with vehicle control (p = 0.03). In vivo, 2Br-DAB reduced tumor frequency in KC mice. In the KPC model, 2Br-DAB or gemcitabine monotherapy had comparable therapeutic effects. Furthermore, the combination of gemcitabine and 2Br-DAB or 2Br-DAB and 18 Gy irradiation showed additional antineoplastic effects. Conclusions: 2Br-DAB is effective in killing pancreatic cancer cells in vitro. 2Br-DAB was not toxic in vivo, and additional antineoplastic effects were observed in combination with irradiation.


Assuntos
Antineoplásicos/uso terapêutico , Derivados de Benzeno/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/radioterapia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Raios gama , Engenharia Genética , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA