Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 74: 117047, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265268

RESUMO

Alzheimer's disease (AD) is an irreversible, progressive neurological disorder characterized by amyloid plaques, hyperphosphorylated tau protein (hyper p-tau), neuronal damage, memory loss, etc. Various factors, such as age, lifestyle, family history, environmental factors, and gene mutation, cause AD. BACE-1 is an interesting target to prevent or reverse AD progression. BACE-1 cleaves amyloid precursor protein (APP) into soluble amyloid precursor protein ß (sAPPß) and membrane-bound C-terminal fragment called C99, a rate-limiting step, and C99 is further cleaved by gamma-secretase to generate neurotoxic amyloid ß (Aß). Discovery and development of selective ß amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors have a great potential for the treatment and maintenance of Alzheimer's disease. In this review, we have compiled literature pertaining to guanidine-based novel BACE-1 inhibitors for the treatment and maintenance of AD. We have also discussed role of BACE-1 substrates, and its crystal structure, BACE-1 inhibitors in the clinical trial, and essential points to overcome challenges associated with selective development of BACE-1 inhibitors. This paper provides valuable information for the design and discovery of selective new BACE-1 inhibitors against other aspartyl protease enzymes to treat AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Guanidina , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia
2.
ChemMedChem ; 17(13): e202200002, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413149

RESUMO

G9a is a lysine methyltransferase able to di-methylate lysine 9 of histone H3, promoting the repression of genes involved in learning and memory. Novel strategies based on synthesizing epigenetic drugs could regulate gene expression through histone post-translational modifications and effectively treat neurodegenerative diseases, like Alzheimer's disease (AD). Here, potential G9a inhibitors were identified using a structure-based virtual screening against G9a, followed by in vitro and in vivo screenings. First, screening methods with the AD transgenic Caenorhabditis elegans strain CL2006, showed that the toxicity/function range was safe and recovered age-dependent paralysis. Likewise, we demonstrated that the best candidates direct target G9a by reducing H3 K9me2 in the CL2006 strain. Further characterization of these compounds involved the assessment of the blood-brain barrier-permeability and impact on amyloid-ß aggregation, showing promising results. Thus, we present a G9a inhibitor candidate, F, with a novel and potent structure, providing both leads in G9a inhibitor design and demonstrating their participation in reducing AD pathology.


Assuntos
Doença de Alzheimer , Inibidores Enzimáticos , Histona-Lisina N-Metiltransferase , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Humanos , Lisina
3.
J Biomol Struct Dyn ; 37(9): 2404-2414, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30047836

RESUMO

Conjugated structure based and ligand based drug design techinques have been used previously to unearth putative binding ligands for kinase inhibition. PI3K-δ is a lipid kinase and it has been found abberant in diseases such as cancer,inflammation etc. Preliminarily, protein crystal structure analysis suggest avaibility of two crystal structures with varying degree of root mean square de throughtion in protein back bone and root mean square fluctuation in side chain geometry. Therefore, PI3K-δ crystal structure was selected based on charactristic reciever operating characterstic curve and % enrichment of actives analysis. Active site analysis through molecular dynamics simulations provided insights about four residues Ile910, Asp911, Met752, Lys755, which act as flap. These residues fecilitate ligand binding in a unique manner.Thereafter, a validated designed protocol has been used to screen asinex ligand database using molecular docking and binding energy calculations. Based on binding affinity & energy scores and interaction pattern analysis total top 50 ligands were selected for PI3K-δ inhibition studies. Moreover, two molecules ethyl 2-(2-((4-chloro-1-methyl-1H-pyrazole-3-carbonyl) oxy)acetamido) benzo[1]thiazole-6-carboxylate and 1,6,7-trimethyl-8-((tetrahydrofuran-2-yl) methyl)-1H-imidazo [1',2':1,5] pyrrolo[3,2-d]pyrimidine-2,4(3H,8H)-dione have been identified, which could be potential hits for PI3K-δ using insights provided by molecular modelling studies. The identified compunds were subjected to pan assay interference compound filter and were found to be compliant. Quantum mechanical calculations were perfromed for identified hits. The above strategy could be implemented as a strategy for rational drug design. Communicated by Ramaswamy H. Sarma.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Purinas/química , Quinazolinonas/química , Sítios de Ligação , Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Molecular , Diester Fosfórico Hidrolases , Conformação Proteica , Purinas/metabolismo , Purinas/farmacologia , Quinazolinonas/metabolismo , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA