Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(16): 8474-8488, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861716

RESUMO

The rich and diverse phytoconstituents of wheatgrass have established it as a natural antioxidant and detoxifying agent. The anti-inflammatory potential of wheatgrass has been studied extensively. However, the neuroprotective potential of wheatgrass has not been studied in depth. In this study, we investigated the neuroprotective response of wheatgrass against age-related scopolamine-induced amnesia in mice. Scopolamine is an established anticholinergic drug that demonstrates the behavioural and molecular characteristics of Alzheimer's disease. In the current study, wheatgrass extracts (prepared from 5 and 7 day old plantlets) were administered to scopolamine-induced memory deficit mice. The Morris water maze (MWM) and Y-maze tests demonstrated that wheatgrass treatment improves the behavior and simultaneously enhances the memory of amnesic mice. We further evaluated the expression of neuroinflammation related genes and proteins in the hippocampal region of mice. Wheatgrass significantly upregulated the mRNA and protein expression of neuroprotective markers such as BDNF and CREB in scopolamine-induced mice. Simultaneously, wheatgrass also downregulated the expression of inflammatory markers such as TNF-α and tau genes in these mice. The treatment of scopolamine-induced memory impaired mice with wheatgrass resulted in an elevation in the level of the phosphorylated form of ERK and Akt proteins. Wheatgrass treatment of mice also regulated the phosphorylation of tau protein and simultaneously prevented its aggregation in the hippocampal region of the brain. Overall, this study suggests the therapeutic potential of wheatgrass in the treatment of age-related memory impairment, possibly through the involvement of ERK/Akt-CREB-BDNF pathway and concomitantly ameliorating the tau-related pathogenesis.


Assuntos
Fármacos Neuroprotetores , Escopolamina , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Escopolamina/efeitos adversos , Escopolamina/metabolismo
2.
Int Immunopharmacol ; 106: 108622, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35183034

RESUMO

Kinesins (KIF's) are the motor proteins which are recently reported to be involved in the trafficking of nociceptors leading to chronic pain. Aurora kinases are known to be involved in the regulation of KIF proteins which are associated with the activation of N-methyl-D-aspartate (NMDA) receptors. Here, we investigated the effect of tozasertib, a pan-Aurora kinase inhibitor, on nerve injury-induced evoked and chronic ongoing pain in rats and the involvement of kinesin family member 17 (KIF17) and NMDA receptor subtype 2B (NR2B) crosstalk in the same. Rats with chronic constriction injury showed a significantly decreased pain threshold in a battery of pain behavioural assays. We found that tozasertib [10, 20, and 40 mg/kg intraperitoneally (i.p.)] treatment showed a significant and dose-dependent inhibition of both evoked and chronic ongoing pain in rats with nerve injury. Tozasertib (40 mg/kg i.p.) and gabapentin (30 mg/kg i.p.) treatment significantly inhibits spontaneous ongoing pain in nerve injured rats but did not produce any place preference behaviour in healthy naïve rats pointing towards their non-addictive analgesic potential. Moreover, tozasertib (10, 20, and 40 mg/kg i.p.) and gabapentin (30 mg/kg i.p.) treatment did not altered the normal pain threshold in healthy naïve rats and didn't produce central nervous system associated side effects as well. Western blotting and reverse transcription polymerase chain reaction studies suggested enhanced expressions of NR2B and KIF-17 along with increased nuclear factor kappa ß (NFkß), tumour necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6) levels in dorsal root ganglion (DRG) and spinal cord of nerve injured rats which was significantly attenuated on treatment with different does of Tozasertib. Findings from the current study suggests that inhibition of pan-Aurora kinase decreased KIF-17 mediated NR2B activation which further leads to significant inhibition of evoked and chronic ongoing pain in nerve-injured rats.


Assuntos
Aurora Quinases , Dor Crônica , Cinesinas , Receptores de N-Metil-D-Aspartato , Animais , Aurora Quinases/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Cinesinas/metabolismo , Limiar da Dor , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA