Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(10): 1318-1325, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470445

RESUMO

BACKGROUND: Uncertainty over the therapeutic benefit of parenteral remdesivir in coronavirus disease 2019 (COVID-19) has resulted in varying treatment guidelines. METHODS: In a multicenter open-label, controlled, adaptive, pharmacometric platform trial, low-risk adult patients with early symptomatic COVID-19 were randomized to 1 of 8 treatment arms including intravenous remdesivir (200 mg followed by 100 mg daily for 5 days) or no study drug. The primary outcome was the rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance (estimated under a linear model fit to the daily log10 viral densities, days 0-7) in standardized duplicate oropharyngeal swab eluates, in a modified intention-to-treat population. This ongoing adaptive trial is registered at ClinicalTrials.gov (NCT05041907). RESULTS: The 2 study arms enrolled 131 patients (remdesivir n = 67, no study drug n = 64) and estimated viral clearance rates from a median of 18 swab samples per patient (a total of 2356 quantitative polymerase chain reactions). Under the linear model, compared with the contemporaneous control arm (no study drug), remdesivir accelerated mean estimated viral clearance by 42% (95% credible interval, 18%-73%). CONCLUSIONS: Parenteral remdesivir accelerates viral clearance in early symptomatic COVID-19. Pharmacometric assessment of therapeutics using the method described can determine in vivo clinical antiviral efficacy rapidly and efficiently.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Resultado do Tratamento , Antivirais
2.
Am J Trop Med Hyg ; 100(5): 1191-1195, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30938284

RESUMO

Plasmodium falciparum infection causes febrile illness and severe disease with multiple organ failure and death when treatment is delayed. Antipyretic treatment is standard, and inducing hypothermia has been proposed to protect the brain in cerebral malaria. Here, we investigated the temperature dependence of asexual-stage parasite development and parasite multiplication in vitro. Plasmodium falciparum laboratory strain TM267 was incubated for 2 hours (short exposure) or 48 hours (continuous exposure) at different temperatures (32°C, 34°C, 35°C, 38°C, 39°C, and 40°C). The starting parasite developmental stage (ring, trophozoite, or schizont) varied between experiments. The parasite multiplication rate (PMR) was reduced under both hyper- and hypothermic conditions; after continuous exposure, the mean PMR ± SD was 9.1 ± 1.2 at 37°C compared with 2.4 ± 1.8 at 32°C, 2.3 ± 0.4 at 34°C, and 0.4 ± 0.1 at 40°C (P < 0.01). Changes in PMR were not significant after 2-hour exposure at temperatures ranging from 32°C to 40°C. Morphological changes in parasite cytoplasm and nucleus could be observed after long exposure to low or high temperature. After 48-hour incubation, rosette formation (≥ 2 uninfected red blood cells bound to infected red blood cells) was decreased at 34°C or 39°C compared with that at 37°C. In conclusion, both hyper- and hypothermia reduce PMR and delay erythrocytic stage development of P. falciparum, subsequently reducing rosette formation.


Assuntos
Eritrócitos/parasitologia , Estágios do Ciclo de Vida , Plasmodium falciparum/crescimento & desenvolvimento , Temperatura , Eritrócitos/fisiologia , Humanos , Formação de Roseta
3.
Food Microbiol ; 46: 161-167, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475280

RESUMO

The objectives of this study were to develop a method for concentrating rotavirus, to assess the detection rate, and to characterize the genotype of naturally occurring rotavirus in bivalve shellfish species; including oysters (Saccostrea forskali), cockles (Anadara nodifera), and mussels (Perna viridis). The results demonstrated that an adsorption-twice elution-extraction method was less-time consuming method of concentrating the spiked rotavirus, yielding high sensitivity of 1.14 genome copies/g of digestive tissues from all three shellfish species, as detected using an RT-nested PCR. In seeding experiments, rotavirus as low as 1.39 genome copies was able to be detected in 4 g of digestive tissues or per sample. In the period of August 2011 to July 2012, of the 300 bivalve shellfish samples collected and tested, 24 (8.0%) were found to be contaminated with rotavirus, the figures being: oysters, 13/100 samples; mussels, 10/100 samples; and cockles, 1/100 samples. By DNA sequencing of the RT-nested PCR products and phylogenetic analysis, the rotaviruses detected were classified into G1, lineage II (4 samples); G3 (10 samples): lineage I (3 samples), lineage IIIc (3 samples), lineage IIId (3 samples), lineage IV (1 sample); G9 (6 samples); and G12, lineage III (1 sample). These findings suggest that this virus concentration method provides high sensitivity for the detection of rotavirus from the three bivalve shellfish species. The prevalence of rotavirus and the identified genotypes contribute to the molecular epidemiology of rotavirus in different shellfish species.


Assuntos
Bivalves/virologia , Reação em Cadeia da Polimerase/métodos , Rotavirus/isolamento & purificação , Frutos do Mar/virologia , Animais , Bivalves/classificação , Contaminação de Alimentos/análise , Genótipo , Filogenia , Rotavirus/classificação , Rotavirus/genética , Frutos do Mar/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA