Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 77(8): 1390-1398, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32179973

RESUMO

Vibrio parahaemolyticus (VP) is a marine bacterium that opportunistically caused foodborne gastroenteritis in human and some diseases in marine animals. The isolated strain of V. parahaemolyticus WS001 from Samut Sakhon, Thailand has a presence of ldh (~ 450 bp) toxA (~ 333 bp) and toxB (~ 1269 bp) genes which showed pathogenicity in shrimp. This strain is suspected as low pathogenicity in human due to the lack of tdh and trh genes for encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), respectively. The shrimp pathogenic strain was tested and revealed the multi-antibiotic resistances but was susceptible to norfloxacin (10 µg/ml). Citrus peel extracts were examined because they are rich in bioactive compounds such as saponins, tannins, flavonoids, steroids, and alkaloids that are effective in anti-VP activities. The ethanolic peel extracts of Citrus aurantifolia (Christm.) Swingle and Citrus hystrix DC. were found to be more anti-VP effect than other solvent extracts by Agar disc diffusion method at an optimum concentration of 50 mg/ml and Broth micro-dilution method (MICs of 50-100 mg/ml and MBCs of 100-200 mg/ml). Thus, C. aurantifolia (Christm.) Swingle peel extract was a distinctive candidate for the development of alternative natural agent to control the spreading of diseases in shrimp.


Assuntos
Citrus/química , Extratos Vegetais/farmacologia , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Penaeidae/microbiologia , Tailândia , Vibrio parahaemolyticus/patogenicidade
2.
Stem Cells ; 31(9): 2015-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23818183

RESUMO

Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double-strand break repair deficiency observed in XLF patients. XLF patient-specific iPSCs (XLF-iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF-iPSCs possess a weak NHEJ-mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF-iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ-mediated-DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development.


Assuntos
Enzimas Reparadoras do DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Dados de Sequência Molecular
3.
Stem Cells ; 31(5): 1022-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23280624

RESUMO

Fanconi anemia (FA) is a genomic instability disorder caused by mutations in genes involved in replication-dependant-repair and removal of DNA cross-links. Mouse models with targeted deletions of FA genes have been developed; however, none of these exhibit the human bone marrow aplasia. Human embryonic stem cell (hESC) differentiation recapitulates many steps of embryonic hematopoietic development and is a useful model system to investigate the early events of hematopoietic progenitor specification. It is now possible to derive patient-specific human-induced pluripotent stem cells (hiPSC); however, this approach has been rather difficult to achieve in FA cells due to a requirement for activation of FA pathway during reprogramming process which can be bypassed either by genetic complementation or reprogramming under hypoxic conditions. In this study, we report that FA-C patient-specific hiPSC lines can be derived under normoxic conditions, albeit at much reduced efficiency. These disease-specific hiPSC lines and hESC with stable knockdown of FANCC display all the in vitro hallmarks of pluripotency. Nevertheless, the disease-specific hiPSCs show a much higher frequency of chromosomal abnormalities compared to parent fibroblasts and are unable to generate teratoma composed of all three germ layers in vivo, likely due to increased genomic instability. Both FANCC-deficient hESC and hiPSC lines are capable of undergoing hematopoietic differentiation, but the hematopoietic progenitors display an increased apoptosis in culture and reduced clonogenic potential. Together these data highlight the critical requirement for FA proteins in survival of hematopoietic progenitors, cellular reprogramming, and maintenance of genomic stability.


Assuntos
Reprogramação Celular/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Células-Tronco Hematopoéticas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/fisiologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Terapia Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
4.
PLoS One ; 8(1): e52989, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326372

RESUMO

Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.


Assuntos
Apoptose , Dano ao DNA , Mitocôndrias/metabolismo , Telomerase/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Células MCF-7 , Microscopia Confocal , Mitocôndrias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oxidantes/farmacologia , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Telomerase/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA