Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(42): 15928-15941, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268905

RESUMO

Cobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron (i.e. Fe2O3, Co3O4, Co2FeO4 and CoFe2O4), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical). The Tauc plot obtained from the solution phase ultraviolet (UV) spectra of the nanoparticles showed band gaps of 2.2, 2.3, 2.5 and 2.8 eV for Fe2O3, Co3O4, Co2FeO4 and CoFe2O4, respectively. Further, the valence band structure and work function analysis using ultraviolet photoelectron spectroscopy (UPS) and core level X-ray photoelectron spectroscopy (XPS) analyses provided better structural insight into metal oxide catalysts. In the Co3O4 system, the valence band structure favors the HER and Fe2O3 favors the OER. The composites Co2FeO4 and CoFe2O4 show a significant change in their core level (O 1s, Co 2p and Fe 2p spectra) and valence band structure. Co3O4 shows an overpotential of 370 mV against 416 mV for Fe2O3 at a current density of 2 mA cm-2 for the HER. Similarly, Fe2O3 shows an overpotential of 410 mV against the 435 mV for Co3O4 at a current density of 10 mA cm-2 for the OER. However, for the ORR, Co3O4 shows 70 mV improvement in the half-wave potential against Fe2O3. The composites (Co2FeO4 and CoFe2O4) display better performance compared to their respective parent oxide systems (i.e., Co3O4 and Fe2O3, respectively) in terms of the ORR half-wave potential, which can be attributed to the presence of the oxygen vacancies over the surface in these systems. This was further corroborated in density functional theory (DFT) simulations, wherein the oxygen vacancy formation on the surface of CoFe2O4(001) was calculated to be significantly lower (∼50 kJ mol-1) compared to Co3O4 (001). The band diagram of the nanoparticles constructed from the various spectroscopic measurements with work function and band gap provides in-depth understanding of the electrocatalytic process.

2.
Nanoscale ; 13(12): 6248-6258, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33885611

RESUMO

In this work, a strategy has been adopted to construct an architecture through the coordination of polyvinylpyrrolidone (PVP) and a monodisperse zeolitic imidazolate framework (ZIF-8), which was entwined by carbon nanotubes (CNTs) firstly, followed by a pyrolysis process to obtain the hybrid catalyst. The meticulous design of the hybrid material using CNTs to interconnect the PVP assisted ZIF-8 derived porous carbon frameworks together produces a hierarchical pore structure and dual-heteroatom (Zn/N) doping (Zn-N/PC@CNT). Without further acid treatment, the hybrid material prepared after pyrolysis at 900 °C (PVP-ZIF-8@CNT-900) has been demonstrated as an efficient non-precious metal catalyst for the oxygen reduction reaction (ORR) with its superior stability compared to the commercial 20 wt% Pt/C catalyst in alkaline media. The catalyst shows better performance towards the ORR, with its more positive onset and half-wave potentials (Eonset = 0.960 V vs. RHE and E1/2 = 0.795 V vs. RHE) than the counterpart system which is free of both CNT and PVP. The high performance of the hybrid catalyst can be ascribed to the co-existence of dual-active sites with hierarchical pore structures originating from the synergistic effects between Zn/N co-doped porous carbon and CNTs. We further demonstrated the single-cell performance by using the homemade system as the cathode catalyst for the Alkaline Exchange Membrane Fuel Cell (AEMFC) system, which showed a maximum power density of 45 mW cm-2 compared to 60 mW cm-2 obtained from the 40 wt% Pt/C catalyst.

3.
Environ Technol ; 35(9-12): 1520-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701951

RESUMO

Bi2-xTixO3+x/2 (x = 0.05, 0.10 and 0.15) photocatalysts are prepared by solid-state technique. The band gap of the prepared sample was estimated from the onset of UV-Vis absorption spectra. The photocatalytic activities of as prepared samples are investigated under UV light irradiation for the decomposition of methyl orange (MO). It has been observed that the rate of decomposition of MO increased with increasing Ti4+ content in the present samples. Moreover, it shows better photocatalytic activity than undoped Bi2O3 and TiO2. The lowest band gap is observed for x = 0.15 sample, i.e. 2.55 eV, which also showed the highest photocatalytic activity in the present sample.


Assuntos
Compostos Azo/efeitos da radiação , Bismuto/química , Fotólise , Titânio/química , Compostos Azo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA