Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(36): 25107-25117, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190644

RESUMO

Eutectic gallium-indium (EGaIn), a room-temperature liquid metal, has garnered significant attention for its applications in soft electronics, multifunctional materials, energy engineering and drug delivery. A key factor influencing these diverse applications is the spontaneous formation of a native passivating oxide shell that not only encapsulates the liquid metal but also alters the properties from the bulk counterpart. Using environmental scanning transmission electron microscopy, we report in situ observations of the oxidation of EGaIn nanoparticles by ambient air under high-energy electron beam irradiation. Our findings demonstrate that uneven oxide shell growth, driven by inward diffusion of adsorbed O species, creates unbalanced stresses. This compels the liquid metal to deform toward regions with slower oxide growth, resulting in shell rupture and allowing the liquid metal core to flow out. This process initiates top-down self-similar replication of the core-shell liquid metal nanoparticles, causing larger particles to break down into smaller particles. Additionally, internal oxidation triggers phase separation within the liquid core, ultimately leading to the pulverization of the liquid metal into finer solid particles rich in indium. These mechanistic insights into the oxidation behavior of the liquid metal hold practical implications for leveraging this process to reconfigure EGaIn nanoparticles for various applications.

2.
Langmuir ; 34(25): 7445-7454, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29856637

RESUMO

We report on the use of electrospray atomization to deliver nanoparticles and surfactant directly to the surface of sessile droplets. The particles delivered to the target droplet remained adsorbed at its interface since they arrived solvent-free. Upon complete evaporation, the interface of the target drop was mapped to the underlying substrate, forming a nanoparticle deposit. The use of electrospray permitted the exploration of the interfacial particle transport and the role of surfactants in governing particle motion and deposit structure. When no surfactant was present in the sprayed solution, there was no observable convection of the interfacial particles. When Tween 80, a high-molecular-weight surfactant, was added to the sprayed solution, the surface flow was similarly suppressed. Only when small surfactants (e.g., sodium dodecyl sulfate) were present in the sprayed solution was Marangoni flow, directed toward the droplet apex, induced at the interface. This flow drove the interfacial particles to the apex of the target droplet, creating a particle-dense region at the center of the final deposit. We found that small surfactants were capable of desorbing from the interface at a sufficiently high rate relative to the evaporation time scale of the target droplet. Once inside the drop, the desorbed surfactant was convected to the contact line where it accumulated, inducing a surface tension gradient and a solutal Marangoni flow. Numerical modeling using the lattice Boltzmann-Brownian dynamics method confirmed this mechanism of particle transport and its relationship to deposit structure. The use of sacrificial targets combined with electrospray may provide a unique capability for building colloidal monolayers with organized structure in a scalable way.

3.
ACS Appl Mater Interfaces ; 8(33): 21750-61, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27525496

RESUMO

We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 µm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.

4.
ACS Appl Mater Interfaces ; 6(22): 19494-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25360833

RESUMO

Aqueous dispersions of artificially synthesized, mussel-inspired poly(dopamine) nanoparticles were inkjet printed on flexible polyethylene terephthalate (PET) substrates. Narrow line patterns (4 µm in width) of poly(dopamine) resulted due to evaporatively driven transport (coffee ring effect). The printed patterns were metallized via a site-selective Cu electroless plating process at a controlled temperature (30 °C) for varied bath times. The lowest electrical resistivity value of the plated Cu lines was about 6 times greater than the bulk resistivity of Cu. This process presents an industrially viable way to fabricate Cu conductive fine patterns for flexible electronics at low temperature, low cost, and without need of sophisticated equipment.


Assuntos
Cobre/química , Indóis/química , Nanopartículas/química , Polímeros/química , Impressão , Temperatura
5.
J Phys Condens Matter ; 21(46): 464130, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21715894

RESUMO

Wetting and spreading in high temperature reactive metal-metal systems is of significant importance in many joining processes. An overview of reactive wetting is presented outlining the principal differences between inert and reactive wetting. New experimental evidence is presented that identifies an early time regime in reactive wetting in which spreading occurs without macroscopic morphological change of the solid-liquid interface. This regime precedes the heavily studied reactive wetting regime. Additional new experimental evidence is presented of kinetic roughening in a high temperature reactive system. Quantitative characterization of this roughening reveals similarities with room temperature systems. These new data provide evidence that supports the existence of several sequential time regimes in the reactive wetting process in which different physicochemical phenomena are dominant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA