Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(11): 4031-6, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550447

RESUMO

2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Prolil Hidroxilases/metabolismo , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Ribossômicas/metabolismo , Análise de Variância , Proteínas de Transporte/genética , Biologia Computacional , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Hidroxilação , Immunoblotting , Imunoprecipitação , Ácidos Cetoglutáricos/metabolismo , Luciferases , Proteínas Nucleares/genética , Prolina/metabolismo , Biossíntese de Proteínas/genética , Leveduras
2.
EMBO Rep ; 13(3): 251-7, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22310300

RESUMO

Hypoxic and oxidant stresses can coexist in biological systems, and oxidant stress has been proposed to activate hypoxia pathways through the inactivation of the 'oxygen-sensing' hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. Here, we show that despite reduced sensitivity to cellular hypoxia, the HIF asparaginyl hydroxylase--known as FIH, factor inhibiting HIF--is strikingly more sensitive to peroxide than the HIF prolyl hydroxylases. These contrasting sensitivities indicate that oxidant stress is unlikely to signal hypoxia directly to the HIF system, but that hypoxia and oxidant stress can interact functionally as distinct regulators of HIF transcriptional output.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Peróxidos/metabolismo , Proteínas Repressoras/metabolismo , Hipóxia Celular/genética , Linhagem Celular , Cisteína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxilação/efeitos dos fármacos , Oxigenases de Função Mista/antagonistas & inibidores , Peróxidos/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Transcrição Gênica
3.
J Biol Chem ; 286(39): 33784-94, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21808058

RESUMO

The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower K(m) value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Repetição de Anquirina , Hipóxia Celular , Células HEK293 , Humanos , Hidroxilação , Fator 1 Induzível por Hipóxia/genética , Espectrometria de Massas , Camundongos , Oxigenases de Função Mista/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética
4.
Cancer Res ; 70(4): 1573-84, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20145130

RESUMO

PR-104, currently in phase II clinical trials, is a phosphate ester pre-prodrug which is converted in vivo to its cognate alcohol, PR-104A, a prodrug designed to exploit tumor hypoxia. Bioactivation occurs via one-electron reduction to DNA crosslinking metabolites in the absence of oxygen. However, certain tumor cell lines activate PR-104A in the presence of oxygen, suggesting the existence of an aerobic nitroreductase. Microarray analysis identified a cluster of five aldo-keto reductase (AKR) family members whose expressions correlated with aerobic metabolism of PR-104A. Plasmid-based expression of candidate genes identified aldo-keto reductase 1C3 as a novel nitroreductase. AKR1C3 protein was detected by Western blot in 7 of 23 cell lines and correlated with oxic PR-104A metabolism, an activity which could be partially suppressed by Nrf2 RNAi knockdown (or induced by Keap1 RNAi), indicating regulation by the ARE pathway. AKR1C3 was unable to sensitize cells to 10 other bioreductive prodrugs and was associated with single-agent PR-104 activity across a panel of 9 human tumor xenograft models. Overexpression in two AKR1C3-negative tumor xenograft models strongly enhanced PR-104 antitumor activity. A population level survey of AKR1C3 expression in 2,490 individual cases across 19 cancer types using tissue microarrays revealed marked upregulation of AKR1C3 in a subset including hepatocellular, bladder, renal, gastric, and non-small cell lung carcinoma. A survey of normal tissue AKR1C3 expression suggests the potential for tumor-selective PR-104A activation by this mechanism. These findings have significant implications for the clinical development of PR-104.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Aerobiose/fisiologia , Hidroxiprostaglandina Desidrogenases/metabolismo , Compostos de Mostarda Nitrogenada/farmacocinética , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/fisiologia , Membro C3 da Família 1 de alfa-Ceto Redutase , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/fisiologia , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Modelos Biológicos , Compostos de Mostarda Nitrogenada/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/farmacologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Res ; 69(9): 3884-91, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19366798

RESUMO

PR-104, currently in clinical trial, is converted systemically to the dinitrobenzamide nitrogen mustard prodrug PR-104A, which is reduced selectively in hypoxic cells to cytotoxic hydroxylamine (PR-104H) and amine (PR-104M) metabolites. Here, we evaluate the roles of this reductive metabolism, and DNA interstrand cross-links (ICL), in the hypoxic and aerobic cytotoxicity of PR-104. Using a panel of 9 human tumor cell lines, cytotoxicity was determined by clonogenic assay after a 2-hour aerobic or hypoxic exposure to PR-104A. PR-104H and PR-104M were determined by high performance liquid chromatography/mass spectrometry, and ICL with the alkaline comet assay. Under hypoxia, the relationship between ICL and cell killing was similar between cell lines. Under aerobic conditions, there was a similar relationship between ICL and cytotoxicity, except in lines with very low rates of aerobic reduction of PR-104A (A2780, C33A, H1299), which showed an ICL-independent mechanism of PR-104A cytotoxicity. Despite this, in xenografts from the same lines, the frequency of PR-104-induced ICL correlated with clonogenic cell killing (r(2) = 0.747) with greatest activity in the fast aerobic metabolizers. In addition, changing levels of hypoxia in SiHa tumors modified both ICL frequency and tumor growth delay in parallel. We conclude that both aerobic and hypoxic nitroreduction of PR-104A contribute to the monotherapy antitumor activity of PR-104 in human tumor xenografts, and that ICL are responsible for its antitumor activity and represent a broadly applicable biomarker for tumor cell killing by this novel prodrug.


Assuntos
Dano ao DNA , DNA de Neoplasias/efeitos dos fármacos , Neoplasias/metabolismo , Compostos de Mostarda Nitrogenada/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Clorambucila , Cromatografia Líquida , DNA de Neoplasias/metabolismo , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Compostos de Mostarda Nitrogenada/farmacocinética , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 13(13): 3922-32, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17606726

RESUMO

PURPOSE: Hypoxia is a characteristic of solid tumors and a potentially important therapeutic target. Here, we characterize the mechanism of action and preclinical antitumor activity of a novel hypoxia-activated prodrug, the 3,5-dinitrobenzamide nitrogen mustard PR-104, which has recently entered clinical trials. EXPERIMENTAL DESIGN: Cytotoxicity in vitro was evaluated using 10 human tumor cell lines. SiHa cells were used to characterize metabolism under hypoxia, by liquid chromatography-mass spectrometry, and DNA damage by comet assay and gammaH2AX formation. Antitumor activity was evaluated in multiple xenograft models (PR-104 +/- radiation or chemotherapy) by clonogenic assay 18 h after treatment or by tumor growth delay. RESULTS: The phosphate ester "pre-prodrug" PR-104 was well tolerated in mice and converted rapidly to the corresponding prodrug PR-104A. The cytotoxicity of PR-104A was increased 10- to 100-fold by hypoxia in vitro. Reduction to the major intracellular metabolite, hydroxylamine PR-104H, resulted in DNA cross-linking selectively under hypoxia. Reaction of PR-104H with chloride ion gave lipophilic cytotoxic metabolites potentially able to provide bystander effects. In tumor excision assays, PR-104 provided greater killing of hypoxic (radioresistant) and aerobic cells in xenografts (HT29, SiHa, and H460) than tirapazamine or conventional mustards at equivalent host toxicity. PR-104 showed single-agent activity in six of eight xenograft models and greater than additive antitumor activity in combination with drugs likely to spare hypoxic cells (gemcitabine with Panc-01 pancreatic tumors and docetaxel with 22RV1 prostate tumors). CONCLUSIONS: PR-104 is a novel hypoxia-activated DNA cross-linking agent with marked activity against human tumor xenografts, both as monotherapy and combined with radiotherapy and chemotherapy.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Hipóxia , Neoplasias/tratamento farmacológico , Compostos de Mostarda Nitrogenada/farmacologia , Fosfatos/farmacologia , Animais , Linhagem Celular Tumoral , Ensaio Cometa , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Histonas/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Compostos de Mostarda Nitrogenada/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA