Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37986909

RESUMO

Zinc is a vital transition metal for Streptococcus pneumoniae, but is deadly at high concentrations. In S. pneumoniae, elevated intracellular free Zn levels result in mis-metallation of key Mn-dependent metabolic and superoxide detoxifying enzymes resulting in Zn intoxication. Here, we report our identification and characterization of the function of the five homologous, CiaRH-regulated Ccn sRNAs in controlling S. pneumoniae virulence and metal homeostasis. We show that deletion of all five ccn genes (ccnA, ccnB, ccnC, ccnD, and ccnE) from S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4) causes Zn hypersensitivity and an attenuation of virulence in a murine invasive pneumonia model. We provide evidence that bioavailable Zn disproportionately increases in S. pneumoniae strains lacking the five ccn genes. Consistent with a response to Zn intoxication or relatively high intracellular free Zn levels, expression of genes encoding the CzcD Zn exporter and the Mn-independent ribonucleotide reductase, NrdD-NrdG, were increased in the ΔccnABCDE mutant relative to its isogenic ccn+ parent strain. The growth inhibition by Zn that occurs as the result of loss of the ccn genes is rescued by supplementation with Mn or Oxyrase™, a reagent that removes dissolved oxygen. Lastly, we found that the Zn-dependent growth inhibition of the ΔccnABCDE strain was not altered by deletion of sodA, whereas the ccn+ ΔsodA strain phenocopied the ΔccnABCDE strain. Overall, our results indicate that the Ccn sRNAs have a crucial role in preventing Zn intoxication in S. pneumoniae.

2.
Proc Natl Acad Sci U S A ; 119(48): e2208022119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409892

RESUMO

The C-terminal domain (CTD) of the major endoribonuclease RNase E not only serves as a scaffold for the central RNA decay machinery in gram-negative bacteria but also mediates coupled degradation of small regulatory RNAs (sRNAs) and their cognate target transcripts following RNA chaperone Hfq-facilitated sRNA-mRNA base pairing. Despite the crucial role of RNase E CTD in sRNA-dependent gene regulation, the contribution of particular residues within this domain in recruiting sRNAs and mRNAs upon base pairing remains unknown. We have previously shown that in Escherichia coli, the highly conserved 3'-5'-exoribonuclease polynucleotide phosphorylase (PNPase) paradoxically stabilizes sRNAs by limiting access of RNase E to Hfq-bound sRNAs and by degrading target mRNA fragments that would otherwise promote sRNA decay. Here, we report that in the absence of PNPase, the RNA-binding region AR2 in the CTD is required for RNase E to initiate degradation of the Hfq-dependent sRNAs CyaR and RyhB. Additionally, we show that introducing mutations in either hfq that disrupts target mRNA binding to Hfq or the AR2 coding region of rne impairs RNase E binding to sRNAs. Altogether, our data support a model where sRNAs are recruited via bound mRNA targets to RNase E by its AR2 domain after Hfq catalyzes sRNA-mRNA pairing. These results also support our conclusion that in a PNPase-deficient strain, more rapid decay of sRNAs occurs due to accelerated pairing with mRNA targets as a consequence of their accumulation. Our findings provide insights into the mechanisms by which sRNAs and mRNAs are regulated by RNase E.


Assuntos
Endorribonucleases , Escherichia coli , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Motivos de Ligação ao RNA , RNA Mensageiro/metabolismo , RNA/metabolismo
3.
mBio ; 12(5): e0238521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544281

RESUMO

RNases perform indispensable functions in regulating gene expression in many bacterial pathogens by processing and/or degrading RNAs. Despite the pivotal role of RNases in regulating bacterial virulence factors, the functions of RNases have not yet been studied in the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus). Here, we sought to determine the impact of two conserved RNases, the endoribonuclease RNase Y and exoribonuclease polynucleotide phosphorylase (PNPase), on the physiology and virulence of S. pneumoniae serotype 2 strain D39. We report that RNase Y and PNPase are essential for pneumococcal pathogenesis, as both deletion mutants showed strong attenuation of virulence in murine models of invasive pneumonia. Genome-wide transcriptomic analysis revealed that the abundances of nearly 200 mRNA transcripts were significantly increased, whereas those of several pneumococcal small regulatory RNAs (sRNAs), including the Ccn (CiaR-controlled noncoding RNA) sRNAs, were altered in the Δrny mutant relative to the wild-type strain. Additionally, lack of RNase Y resulted in pleiotropic phenotypes that included defects in pneumococcal cell morphology and growth in vitro. In contrast, Δpnp mutants showed no growth defect in vitro but differentially expressed a total of 40 transcripts, including the tryptophan biosynthesis operon genes and numerous 5' cis-acting regulatory RNAs, a majority of which were previously shown to impact pneumococcal disease progression in mice using the serotype 4 strain TIGR4. Together, our data suggest that RNase Y exerts a global impact on pneumococcal physiology, while PNPase mediates virulence phenotypes, likely through sRNA regulation. IMPORTANCE Streptococcus pneumoniae is a notorious human pathogen that adapts to conditions in distinct host tissues and responds to host cell interactions by adjusting gene expression. RNases are key players that modulate gene expression by mediating the turnover of regulatory and protein-coding transcripts. Here, we characterized two highly conserved RNases, RNase Y and PNPase, and evaluated their impact on the S. pneumoniae transcriptome for the first time. We show that PNPase influences the levels of a narrow set of mRNAs but a large number of regulatory RNAs primarily implicated in virulence control, whereas RNase Y has a more sweeping effect on gene expression, altering levels of transcripts involved in diverse cellular processes, including cell division, metabolism, stress response, and virulence. This study further reveals that RNase Y regulates expression of genes governing competence by mediating the turnover of CiaR-controlled noncoding (Ccn) sRNAs.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Infecções Pneumocócicas/microbiologia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Polirribonucleotídeo Nucleotidiltransferase/genética , Streptococcus pneumoniae/genética , Virulência
4.
Mol Cell ; 81(14): 2901-2913.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157309

RESUMO

Polynucleotide phosphorylase (PNPase) is an ancient exoribonuclease conserved in the course of evolution and is found in species as diverse as bacteria and humans. Paradoxically, Escherichia coli PNPase can act not only as an RNA degrading enzyme but also by an unknown mechanism as a chaperone for small regulatory RNAs (sRNAs), with pleiotropic consequences for gene regulation. We present structures of the ternary assembly formed by PNPase, the RNA chaperone Hfq, and sRNA and show that this complex boosts sRNA stability in vitro. Comparison of structures for PNPase in RNA carrier and degradation modes reveals how the RNA is rerouted away from the active site through interactions with Hfq and the KH and S1 domains. Together, these data explain how PNPase is repurposed to protect sRNAs from cellular ribonucleases such as RNase E and could aid RNA presentation to facilitate regulatory actions on target genes.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Bacteriano/genética , Domínio Catalítico/genética , Endorribonucleases/genética , Exorribonucleases/genética , Regulação Bacteriana da Expressão Gênica/genética , Chaperonas Moleculares/genética , Estabilidade de RNA/genética , Pequeno RNA não Traduzido/genética
5.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601068

RESUMO

Posttranscriptional gene regulation often involves RNA-binding proteins that modulate mRNA translation and/or stability either directly through protein-RNA interactions or indirectly by facilitating the annealing of small regulatory RNAs (sRNAs). The human pathogen Streptococcus pneumoniae D39 (pneumococcus) does not encode homologs to RNA-binding proteins known to be involved in promoting sRNA stability and function, such as Hfq or ProQ, even though it contains genes for at least 112 sRNAs. However, the pneumococcal genome contains genes for other RNA-binding proteins, including at least six S1 domain proteins: ribosomal protein S1 (rpsA), polynucleotide phosphorylase (pnpA), RNase R (rnr), and three proteins with unknown functions. Here, we characterize the function of one of these conserved, yet uncharacterized, S1 domain proteins, SPD_1366, which we have renamed CvfD (conserved virulence factor D), since loss of the protein results in attenuation of virulence in a murine pneumonia model. We report that deletion of cvfD impacts the expression of 144 transcripts, including the pst1 operon, encoding phosphate transport system 1 in S. pneumoniae We further show that CvfD posttranscriptionally regulates the PhoU2 master regulator of the pneumococcal dual-phosphate transport system by binding phoU2 mRNA and impacting PhoU2 translation. CvfD not only controls expression of phosphate transporter genes but also functions as a pleiotropic regulator that impacts cold sensitivity and the expression of sRNAs and genes involved in diverse cellular functions, including manganese uptake and zinc efflux. Together, our data show that CvfD exerts a broad impact on pneumococcal physiology and virulence, partly by posttranscriptional gene regulation.IMPORTANCE Recent advances have led to the identification of numerous sRNAs in the major human respiratory pathogen S. pneumoniae However, little is known about the functions of most sRNAs or RNA-binding proteins involved in RNA biology in pneumococcus. In this paper, we characterize the phenotypes and one target of the S1 domain RNA-binding protein CvfD, a homolog of general stress protein 13 identified, but not extensively characterized, in other Firmicutes species. Pneumococcal CvfD is a broadly pleiotropic regulator, whose absence results in misregulation of divalent cation homeostasis, reduced translation of the PhoU2 master regulator of phosphate uptake, altered metabolism and sRNA amounts, cold sensitivity, and attenuation of virulence. These findings underscore the critical roles of RNA biology in pneumococcal physiology and virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Resposta ao Choque Frio , Fosfatos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos ICR , Infecções Pneumocócicas/microbiologia , Proteínas Ribossômicas/metabolismo , Streptococcus pneumoniae/patogenicidade , Virulência
6.
Nucleic Acids Res ; 47(16): 8821-8837, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31329973

RESUMO

In many Gram-negative and some Gram-positive bacteria, small regulatory RNAs (sRNAs) that bind the RNA chaperone Hfq have a pivotal role in modulating virulence, stress responses, metabolism and biofilm formation. These sRNAs recognize transcripts through base-pairing, and sRNA-mRNA annealing consequently alters the translation and/or stability of transcripts leading to changes in gene expression. We have previously found that the highly conserved 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) has an indispensable role in paradoxically stabilizing Hfq-bound sRNAs and promoting their function in gene regulation in Escherichia coli. Here, we report that PNPase contributes to the degradation of specific short mRNA fragments, the majority of which bind Hfq and are derived from targets of sRNAs. Specifically, we found that these mRNA-derived fragments accumulate in the absence of PNPase or its exoribonuclease activity and interact with PNPase. Additionally, we show that mutations in hfq or in the seed pairing region of some sRNAs eliminated the requirement of PNPase for their stability. Altogether, our results are consistent with a model that PNPase degrades mRNA-derived fragments that could otherwise deplete cells of Hfq-binding sRNAs through pairing-mediated decay.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Pareamento de Bases , Sequência de Bases , Domínio Catalítico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Cinética , Mutação , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Clivagem do RNA , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo
7.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30833353

RESUMO

Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and a leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by posttranscriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in the S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs has been further implicated in regulating pneumococcal pathogenesis. However, there is little overlap in the sRNAs identified among these studies, which indicates that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there are likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA sequencing (RNA-seq)-based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program toward identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4, including ones previously implicated in virulence, are not present in the strain D39 genome, suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 66 new sRNA candidates in strain D39, 30 of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.IMPORTANCE Recent work has shown that sRNAs play crucial roles in S. pneumoniae pathogenesis, as inactivation of nearly one-third of the putative sRNA genes identified in one study led to reduced fitness or virulence in a murine model. Yet our understanding of sRNA-mediated gene regulation in S. pneumoniae has been hindered by limited knowledge about these regulatory RNAs, including which sRNAs are synthesized by different S. pneumoniae strains. We sought to address this problem by developing a sensitive sRNA detection technique to identify sRNAs in S. pneumoniae D39. A comparison of our data set reported here to those of other RNA-seq studies for S. pneumoniae strain D39 and TIGR4 has provided new insights into the S. pneumoniae sRNA transcriptome.


Assuntos
Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Streptococcus pneumoniae/genética , Transcriptoma , Genoma Bacteriano , Análise de Sequência de RNA , Sorogrupo , Virulência
8.
RNA ; 24(11): 1496-1511, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30061117

RESUMO

Small regulatory RNAs (sRNAs) are an important class of bacterial post-transcriptional regulators that control numerous physiological processes, including stress responses. In Gram-negative bacteria including Escherichia coli, the RNA chaperone Hfq binds many sRNAs and facilitates pairing to target transcripts, resulting in changes in mRNA transcription, translation, or stability. Here, we report that poly(A) polymerase (PAP I), which promotes RNA degradation by exoribonucleases through the addition of poly(A) tails, has a crucial role in the regulation of gene expression by Hfq-dependent sRNAs. Specifically, we show that deletion of pcnB, encoding PAP I, paradoxically resulted in an increased turnover of certain Hfq-dependent sRNAs, including RyhB. RyhB instability in the pcnB deletion strain was suppressed by mutations in hfq or ryhB that disrupt pairing of RyhB with target RNAs, by mutations in the 3' external transcribed spacer of the glyW-cysT-leuZ transcript (3'ETSLeuZ) involved in pairing with RyhB, or an internal deletion in rne, which encodes the endoribonuclease RNase E. Finally, the reduced stability of RyhB in the pcnB deletion strain resulted in impaired regulation of some of its target mRNAs, specifically sodB and sdhCDAB. Altogether our data support a model where PAP I plays a critical role in ensuring the efficient decay of the 3'ETSLeuZ In the absence of PAP I, the 3'ETSLeuZ transcripts accumulate, bind Hfq, and pair with RyhB, resulting in its depletion via RNase E-mediated decay. This ultimately leads to a defect in RyhB function in a PAP I deficient strain.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Polinucleotídeo Adenililtransferase/metabolismo , Pequeno RNA não Traduzido/genética , Modelos Biológicos , Estabilidade de RNA , RNA Bacteriano/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-27379215

RESUMO

Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (µM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na(+)/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Streptococcus pneumoniae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Genes Bacterianos , Proteínas de Membrana Transportadoras/genética , Óperon , Proteínas de Transporte de Fosfato/genética , Fosfatos/administração & dosagem , Fosforilação , RNA Bacteriano/genética , Deleção de Sequência , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
10.
RNA ; 22(3): 360-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26759452

RESUMO

In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3' ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action.


Assuntos
Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA/metabolismo , Hidrólise , Ligação Proteica
11.
Mol Microbiol ; 97(2): 229-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869931

RESUMO

The Phr peptides of the Bacillus species mediate quorum sensing, but their identification and function in other species of bacteria have not been determined. We have identified a Phr peptide quorum-sensing system (TprA/PhrA) that controls the expression of a lantibiotic gene cluster in the Gram-positive human pathogen, Streptococcus pneumoniae. Lantibiotics are highly modified peptides that are part of the bacteriocin family of antimicrobial peptides. We have characterized the basic mechanism for a Phr-peptide signaling system in S. pneumoniae and found that it induces the expression of the lantibiotic genes when pneumococcal cells are at high density in the presence of galactose, a main sugar of the human nasopharynx, a highly competitive microbial environment. Activity of the Phr peptide system is not seen when pneumococcal cells are grown with glucose, the preferred carbon source and the most prevalent sugar encountered by S. pneumoniae during invasive disease. Thus, the lantibiotic genes are expressed under the control of both cell density signals via the Phr peptide system and nutritional signals from the carbon source present, suggesting that quorum sensing and the lantibiotic machinery may help pneumococcal cells compete for space and resources during colonization of the nasopharynx.


Assuntos
Bacteriocinas/biossíntese , Bacteriocinas/genética , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Percepção de Quorum/fisiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Percepção de Quorum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA