Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1292054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504888

RESUMO

Plants intricately deploy defense systems to counter diverse biotic and abiotic stresses. Omics technologies, spanning genomics, transcriptomics, proteomics, and metabolomics, have revolutionized the exploration of plant defense mechanisms, unraveling molecular intricacies in response to various stressors. However, the complexity and scale of omics data necessitate sophisticated analytical tools for meaningful insights. This review delves into the application of artificial intelligence algorithms, particularly machine learning and deep learning, as promising approaches for deciphering complex omics data in plant defense research. The overview encompasses key omics techniques and addresses the challenges and limitations inherent in current AI-assisted omics approaches. Moreover, it contemplates potential future directions in this dynamic field. In summary, AI-assisted omics techniques present a robust toolkit, enabling a profound understanding of the molecular foundations of plant defense and paving the way for more effective crop protection strategies amidst climate change and emerging diseases.

2.
Front Plant Sci ; 14: 1256186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877081

RESUMO

The Lateral Organ Boundaries Domain (LBD) containing genes are a set of plant-specific transcription factors and are crucial for controlling both organ development and defense mechanisms as well as anthocyanin synthesis and nitrogen metabolism. It is imperative to understand how methylation regulates gene expression, through predicting methylation sites of their promoters particularly in major crop species. In this study, we developed a user-friendly prediction server for accurate prediction of 6mA sites by incorporating a robust feature set, viz., Binary Encoding of Mono-nucleotide DNA. Our model,MethSemble-6mA, outperformed other state-of-the-art tools in terms of accuracy (93.12%). Furthermore, we investigated the pattern of probable 6mA sites at the upstream promoter regions of the LBD-containing genes in Triticum aestivum and its allied species using the developed tool. On average, each selected species had four 6mA sites, and it was found that with speciation and due course of evolution in wheat, the frequency of methylation have reduced, and a few sites remain conserved. This obviously cues gene birth and gene expression alteration through methylation over time in a species and reflects functional conservation throughout evolution. Since DNA methylation is a vital event in almost all plant developmental processes (e.g., genomic imprinting and gametogenesis) along with other life processes, our findings on epigenetic regulation of LBD-containing genes have dynamic implications in basic and applied research. Additionally, MethSemble-6mA (http://cabgrid.res.in:5799/) will serve as a useful resource for a plant breeders who are interested to pursue epigenetic-based crop improvement research.

3.
Curr Genomics ; 23(5): 353-368, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36778191

RESUMO

Background: One major challenge in binning Metagenomics data is the limited availability of reference datasets, as only 1% of the total microbial population is yet cultured. This has given rise to the efficacy of unsupervised methods for binning in the absence of any reference datasets. Objective: To develop a deep clustering-based binning approach for Metagenomics data and to evaluate results with suitable measures. Methods: In this study, a deep learning-based approach has been taken for binning the Metagenomics data. The results are validated on different datasets by considering features such as Tetra-nucleotide frequency (TNF), Hexa-nucleotide frequency (HNF) and GC-Content. Convolutional Autoencoder is used for feature extraction and for binning; the K-means clustering method is used. Results: In most cases, it has been found that evaluation parameters such as the Silhouette index and Rand index are more than 0.5 and 0.8, respectively, which indicates that the proposed approach is giving satisfactory results. The performance of the developed approach is compared with current methods and tools using benchmarked low complexity simulated and real metagenomic datasets. It is found better for unsupervised and at par with semi-supervised methods. Conclusion: An unsupervised advanced learning-based approach for binning has been proposed, and the developed method shows promising results for various datasets. This is a novel approach for solving the lack of reference data problem of binning in metagenomics.

4.
Curr Genomics ; 23(2): 137-146, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36778980

RESUMO

Background: Binning of metagenomic reads is an active area of research, and many unsupervised machine learning-based techniques have been used for taxonomic independent binning of metagenomic reads. Objective: It is important to find the optimum number of the cluster as well as develop an efficient pipeline for deciphering the complexity of the microbial genome. Methods: Applying unsupervised clustering techniques for binning requires finding the optimal number of clusters beforehand and is observed to be a difficult task. This paper describes a novel method, MetaConClust, using coverage information for grouping of contigs and automatically finding the optimal number of clusters for binning of metagenomics data using a consensus-based clustering approach. The coverage of contigs in a metagenomics sample has been observed to be directly proportional to the abundance of species in the sample and is used for grouping of data in the first phase by MetaConClust. The Partitioning Around Medoid (PAM) method is used for clustering in the second phase for generating bins with the initial number of clusters determined automatically through a consensus-based method. Results: Finally, the quality of the obtained bins is tested using silhouette index, rand Index, recall, precision, and accuracy. Performance of MetaConClust is compared with recent methods and tools using benchmarked low complexity simulated and real metagenomic datasets and is found better for unsupervised and comparable for hybrid methods. Conclusion: This is suggestive of the proposition that the consensus-based clustering approach is a promising method for automatically finding the number of bins for metagenomics data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA