Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Reg Health Southeast Asia ; 14: 100205, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37193348

RESUMO

Background: The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods: A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings: This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation: RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding: UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.

2.
Environ Monit Assess ; 194(5): 342, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389102

RESUMO

The present study tracked the city-wide dynamics of severe acute respiratory syndrome-corona virus 2 ribonucleic acids (SARS-CoV-2 RNA) in the wastewater from nine different wastewater treatment plants (WWTPs) in Jaipur during the second wave of COVID-19 out-break in India. A total of 164 samples were collected weekly between February 19th and June 8th, 2021. SARS-CoV-2 was detected in 47.2% (52/110) influent samples and 37% (20/54) effluent samples. The increasing percentage of positive influent samples correlated with the city's increasing active clinical cases during the second wave of COVID-19 in Jaipur. Furthermore, wastewater-based epidemiology (WBE) evidence clearly showed early detection of about 20 days (9/9 samples reported positive on April 20th, 2021) before the maximum cases and maximum deaths reported in the city on May 8th, 2021. The present study further observed the presence of SARS-CoV-2 RNA in treated effluents at the time window of maximum active cases in the city even after tertiary disinfection treatments of ultraviolet (UV) and chlorine (Cl2) disinfection. The average genome concentration in the effluents and removal efficacy of six commonly used treatments, activated sludge process + chlorine disinfection (ASP + Cl2), moving bed biofilm reactor (MBBR) with ultraviolet radiations disinfection (MBBR + UV), MBBR + chlorine (Cl2), sequencing batch reactor (SBR), and SBR + Cl2, were compared with removal efficacy of SBR + Cl2 (81.2%) > MBBR + UV (68.8%) > SBR (57.1%) > ASP (50%) > MBBR + Cl2 (36.4%). The study observed the trends and prevalence of four genes (E, RdRp, N, and ORF1ab gene) based on two different kits and found that prevalence of N > ORF1ab > RdRp > E gene suggested that the effective genome concentration should be calculated based on the presence/absence of multiple genes. Hence, it is imperative to say that using a combination of different detection genes (E, N, RdRp, & ORF1ab genes) increases the sensitivity in WBE.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Biofilmes , Reatores Biológicos , COVID-19/epidemiologia , Cloro , Monitoramento Ambiental , Humanos , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA