Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ERJ Open Res ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33778054

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is commonly isolated from airways of patients suffering from chronic respiratory diseases, such as COPD or cystic fibrosis (CF). However, to what extent NTHi long-term infection contributes to the lung inflammatory burden during chronic airway disease is still controversial. Here, we exploited human respiratory samples from a small cohort of CF patients and found that patients chronically infected with NTHi had significantly higher levels of interleukin (IL)-8 and CXCL1 than those who were not infected. To better define the impact of chronic NTHi infection in fuelling inflammatory response in chronic lung diseases, we developed a new mouse model using both laboratory and clinical strains. Chronic NTHi infection was associated with chronic inflammation of the lung, characterised by recruitment of neutrophils and cytokine release keratinocyte-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2), granulocyte colony-stimulating factor (G-CFS), IL-6, IL-17A and IL-17F) at 2 and 14 days post-infection. An increased burden of T-cell-mediated response (CD4+ and γδ cells) and higher levels of pro-matrix metalloproteinase 9 (pro-MMP9), known to be associated with tissue remodelling, were observed at 14 days post-infection. Of note we found that both CD4+IL-17+ cells and levels of IL-17 cytokines were enriched in mice at advanced stages of NTHi chronic infection. Moreover, by immunohistochemistry we found CD3+, B220+ and CXCL-13+ cells localised in bronchus-associated lymphoid tissue-like structures at day 14. Our results demonstrate that chronic NTHi infection exerts a pro-inflammatory activity in the human and murine lung and could therefore contribute to the exaggerated burden of lung inflammation in patients at risk.

2.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127447

RESUMO

Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression.IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection.


Assuntos
Camundongos de Cruzamento Colaborativo/genética , Predisposição Genética para Doença , Pulmão/microbiologia , Infecções por Pseudomonas/genética , Infecções Respiratórias/genética , Infecções Respiratórias/microbiologia , Adolescente , Animais , Linhagem Celular Tumoral , Criança , Cromossomos , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto Jovem
3.
Mamm Genome ; 29(7-8): 550-557, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29947963

RESUMO

Understanding the significance of human genetic diversity in modulating host susceptibility to opportunistic infections is an emerging challenge in the field of respiratory illnesses. While it is recognized that diverse bacterial strains account for differential disease manifestations, emerging data indicate that host genetic diversity is an important determinant factor that influences the severity of opportunistic infections. With particular regard to respiratory illnesses mediated by the gram-negative bacterium Pseudomonas aeruginosa, diverse genetic background is also emerging as a key contributor. Human-genome-wide association studies are a common approach for determining the inter-individual genetic variation associated with variability of the pulmonary infections. Historically, diverse murine inbred mouse strains and ex-vivo cellular models were considered complementary to human studies for establishing the contribution of genetic background to P. aeruginosa respiratory infections. More recently, the development of a new mouse model of infection, mirroring human airway diseases, combined with innovative murine resource populations, modelling human genetic variation, provides additional insights into the mechanisms of genetic susceptibility. In this review, we cover the recent state of the art of human and animal studies and we discuss future potential challenges in the field of P. aeruginosa respiratory infections.


Assuntos
Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Infecções Respiratórias/genética , Infecções Respiratórias/microbiologia , Animais , Modelos Animais de Doenças , Patrimônio Genético , Heterogeneidade Genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Endogâmicos , Locos de Características Quantitativas
4.
Int J Mol Sci ; 19(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29315274

RESUMO

Several chronic respiratory diseases are characterized by recurrent and/or persistent infections, chronic inflammatory responses and tissue remodeling, including increased levels of glycosaminoglycans which are known structural components of the airways. Among glycosaminoglycans, heparan sulfate (HS) has been suggested to contribute to excessive inflammatory responses. Here, we aim at (i) investigating whether long-term infection by Pseudomonas aeruginosa, one of the most worrisome threat in chronic respiratory diseases, may impact HS levels, and (ii) exploring HS competitors as potential anti-inflammatory drugs during P. aeruginosa pneumonia. P. aeruginosa clinical strains and ad-hoc synthesized HS competitors were used in vitro and in murine models of lung infection. During long-term chronic P. aeruginosa colonization, infected mice showed higher heparin/HS levels, evaluated by high performance liquid chromatography-mass spectrometry after selective enzymatic digestion, compared to uninfected mice. Among HS competitors, an N-acetyl heparin and a glycol-split heparin dampened leukocyte recruitment and cytokine/chemokine production induced by acute and chronic P. aeruginosa pneumonia in mice. Furthermore, treatment with HS competitors reduced bacterial burden during chronic murine lung infection. In vitro, P. aeruginosa biofilm formation decreased upon treatment with HS competitors. Overall, these findings support further evaluation of HS competitors as a novel therapy to counteract inflammation and infection during P. aeruginosa pneumonia.


Assuntos
Anti-Inflamatórios/uso terapêutico , Heparitina Sulfato/química , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/fisiologia , Infecções Respiratórias/prevenção & controle , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Biofilmes/efeitos dos fármacos , Quimiocinas/análise , Quimiocinas/metabolismo , Cromatografia Líquida de Alta Pressão , Citocinas/análise , Citocinas/metabolismo , Modelos Animais de Doenças , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia
5.
J Infect Dis ; 217(6): 933-942, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29216403

RESUMO

Background: Staphylococcus aureus and Pseudomonas aeruginosa are key bacterial pathogens of the respiratory tract in patients with cystic fibrosis (CF). Although P. aeruginosa chronic bronchial infection is associated with a poorer prognosis, the consequences of S. aureus colonization on CF outcomes are controversial. Methods: In this paper, murine models of infection resembling traits of the CF human airways disease have been revisited using an infection schedule that mimics the sequence of events of pulmonary disease in CF patients. First, mice were infected with S. aureus, embedded in agar beads; this was followed by P. aeruginosa infection and analysis of bacterial load, leukocyte infiltration, and lung tissue damage. Results: We reveal that (1) S. aureus promotes severe lesions including abscess formation, (2) S. aureus increases the risk of subsequent chronic P. aeruginosa respiratory infection, and (3) once the chronic infection has been established, P. aeruginosa influences most of the inflammatory responses independent of S. aureus. Conclusions: Our findings established the significance of S. aureus colonization per se and the impact on the subsequent P. aeruginosa infection. This would point towards a thorough assessment for the need of treatment against S. aureus.


Assuntos
Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/complicações , Staphylococcus aureus/patogenicidade , Animais , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Regulação Bacteriana da Expressão Gênica/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/complicações , Infecções Estafilocócicas/microbiologia
6.
Sci Rep ; 6: 25937, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189736

RESUMO

Resistance and tolerance mechanisms participate to the interplay between host and pathogens. IL-17-mediated response has been shown to be crucial for host resistance to respiratory infections, whereas its role in host tolerance during chronic airway colonization is still unclear. Here, we investigated whether IL-17-mediated response modulates mechanisms of host tolerance during airways chronic infection by P. aeruginosa. First, we found that IL-17A levels were sustained in mice at both early and advanced stages of P. aeruginosa chronic infection and confirmed these observations in human respiratory samples from cystic fibrosis patients infected by P. aeruginosa. Using IL-17a(-/-) or IL-17ra(-/-) mice, we found that the deficiency of IL-17A/IL-17RA axis was associated with: i) increased incidence of chronic infection and bacterial burden, indicating its role in the host resistance to P. aeruginosa; ii) reduced cytokine levels (KC), tissue innate immune cells and markers of tissue damage (pro-MMP-9, elastin degradation, TGF-ß1), proving alteration of host tolerance. Blockade of IL-17A activity by a monoclonal antibody, started when chronic infection is established, did not alter host resistance but increased tolerance. In conclusion, this study identifies IL-17-mediated response as a negative regulator of host tolerance during P. aeruginosa chronic airway infection.


Assuntos
Fibrose Cística/microbiologia , Interleucina-17/genética , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/microbiologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Incidência , Interleucina-17/metabolismo , Camundongos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/genética , Infecções Respiratórias/imunologia , Regulação para Cima
7.
Sci Rep ; 6: 21465, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883959

RESUMO

Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies.


Assuntos
Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Animais , Linhagem Celular , Quimiocinas/metabolismo , Fibrose Cística/complicações , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Infecções Oportunistas , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA