Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541683

RESUMO

Semaphorin 3A (SEMA3A) plays a crucial role in the development, differentiation, and plasticity of specific types of neurons that secrete Gonadotropin-Releasing Hormone (GnRH) and regulates the acquisition and maintenance of reproductive competence in humans and mice. Its insufficient expression has been linked to reproductive disorders in humans, which are characterized by reduced or failed sexual competence. Various mutations, polymorphisms, and alternatively spliced variants of SEMA3A have been associated with infertility. One of the common causes of infertility in women of reproductive age is diminished ovarian reserve (DOR), characterized by a reduced ovarian follicular pool. Despite its clinical significance, there are no universally accepted diagnostic criteria or therapeutic interventions for DOR. In this study, we analyzed the SEMA3A plasma levels in 77 women and investigated their potential role in influencing fertility in patients with DOR. The results revealed that the SEMA3A levels were significantly higher in patients with DOR than in healthy volunteers. Furthermore, the SEMA3A levels were increased in patients who underwent fertility treatment and had positive Beta-Human Chorionic Gonadotropin (ßHCG) values (ß+) after controlled ovarian stimulation (COS) compared to those who had negative ßHCG values (ß-). These findings may serve as the basis for future investigations into the diagnosis of infertility and emphasize new possibilities for the SEMA3A-related treatment of sexual hormonal dysfunction that leads to infertility.

3.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298129

RESUMO

The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the progression of several diseases affecting central nervous system, including stroke, Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM seems to exert a common detrimental role in these diseases by inhibiting the transcription of several neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegenerative processes in several pathological conditions affecting central nervous system.


Assuntos
Proteínas Interatuantes com Canais de Kv , Proteínas Repressoras , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/genética , Encéfalo/metabolismo , Dinorfinas/metabolismo , Núcleo Celular/metabolismo
4.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298687

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, is the most common cause of dementia in the elderly population. Since its original description, there has been intense debate regarding the factors that trigger its pathology. It is becoming apparent that AD is more than a brain disease and harms the whole-body metabolism. We analyzed 630 polar and apolar metabolites in the blood of 20 patients with AD and 20 healthy individuals, to determine whether the composition of plasma metabolites could offer additional indicators to evaluate any alterations in the metabolic pathways related to the illness. Multivariate statistical analysis showed that there were at least 25 significantly dysregulated metabolites in patients with AD compared with the controls. Two membrane lipid components, glycerophospholipids and ceramide, were upregulated, whereas glutamic acid, other phospholipids, and sphingolipids were downregulated. The data were analyzed using metabolite set enrichment analysis and pathway analysis using the KEGG library. The results showed that at least five pathways involved in the metabolism of polar compounds were dysregulated in patients with AD. Conversely, the lipid pathways did not show significant alterations. These results support the possibility of using metabolome analysis to understand alterations in the metabolic pathways related to AD pathophysiology.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Metabolômica/métodos , Metaboloma/fisiologia , Espectrometria de Massas , Redes e Vias Metabólicas
5.
Cell Biosci ; 12(1): 182, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348448

RESUMO

BACKGROUND: Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intriguingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurodevelopment. This means that alterations in Sema 3A signaling might compromise hippocampal and cortical circuits and predispose to disorders such as autism and schizophrenia. Consistently, increased Sema 3A levels have been detected in brain of patients with schizophrenia and many polymorphisms in Sema 3A or in the Sema 3A receptors, Neuropilins (Npn 1 and 2) and Plexin As (Plxn As), have been associated to autism. RESULTS: Here we present data indicating that when overexpressed, Sema 3A causes human neural progenitors (NP) axonal retraction and an aberrant dendritic arborization. Similarly, Sema 3A, when overexpressed in human microglia, triggers proinflammatory processes that are highly detrimental to themselves as well as NP. Indeed, NP incubated in microglia overexpressing Sema 3A media retract axons within an hour and then start suffering and finally die. Sema 3A mediated retraction appears to be related to its binding to Npn 1 and Plxn A2 receptors, thus activating the downstream Fyn tyrosine kinase pathway that promotes the threonine-serine kinase cyclin-dependent kinase 5, CDK5, phosphorylation at the Tyr15 residue and the CDK5 processing to generate the active fragment p35. CONCLUSIONS: All together this study identifies Sema 3A as a critical regulator of human NP differentiation. This may imply that an insult due to Sema 3A overexpression during the early phases of neuronal development might compromise neuronal organization and connectivity and make neurons perhaps more vulnerable to other insults across their lifespan.

6.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806133

RESUMO

Sodium/Calcium exchangers are neuronal plasma membrane antiporters which, by coupling Ca2+ and Na+ fluxes across neuronal membranes, play a relevant role in brain ischemia. The most brain-expressed isoform among the members of the K+-dependent Na+/Ca2+ exchanger family, NCKX2, is involved in the progression of the ischemic lesion, since both its knocking-down and its knocking-out worsens ischemic damage. The aim of this study was to elucidate whether NCKX2 functions as an effector in the neuroprotection evoked by ischemic preconditioning. For this purpose, we investigated: (1) brain NCKX2 expression after preconditioning and preconditioning + ischemia; (2) the contribution of AKT and calpain to modulating NCKX2 expression during preconditioning; and (3) the effect of NCKX2 knocking-out on the neuroprotection mediated by ischemic preconditioning. Our results showed that NCKX2 expression increased in those brain regions protected by ischemic preconditioning. These changes were p-AKT-mediated since its inhibition prevented NCKX2 up-regulation. More interestingly, NCKX2 knocking-out significantly prevented the protection exerted by ischemic preconditioning. Overall, our results suggest that NCKX2 plays a fundamental role in the neuroprotective effect mediated by ischemic preconditioning and support the idea that the enhancement of its expression and activity might represent a reasonable strategy to reduce infarct extension after stroke.


Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Humanos , Neuroproteção , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360942

RESUMO

The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson's disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging.


Assuntos
Mesencéfalo/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Trocador de Sódio e Cálcio/metabolismo , alfa-Sinucleína/genética , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Trocador de Sódio e Cálcio/genética , alfa-Sinucleína/metabolismo
8.
Cell Death Dis ; 12(5): 423, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931586

RESUMO

Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at -23/-17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology.


Assuntos
Hipóxia Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Acidente Vascular Cerebral/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Neuroproteção , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/genética , Acidente Vascular Cerebral/genética , Fatores de Transcrição/genética , Transfecção , Fator MTF-1 de Transcrição
9.
Cells ; 9(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751526

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a few early detection strategies. We previously proposed the amyloid precursor protein (APP) tyrosine 682 (Tyr682) residue as a valuable target for the development of new innovative pharmacologic or diagnostic interventions in AD. Indeed, when APP is phosphorylated at Tyr682, it is forced into acidic neuronal compartments where it is processed to generate neurotoxic amyloid ß peptides. Of interest, Fyn tyrosine kinase (TK) interaction with APP Tyr682 residue increases in AD neurons. Here we proved that when Fyn TK was overexpressed it elicited APP Tyr682 phosphorylation in neurons from healthy donors and promoted the amyloidogenic APP processing with Aß peptides accumulation and neuronal death. Phosphorylation of APP at Tyr (pAPP-Tyr) increased in neurons of AD patients and AD neurons that exhibited high pAPP-Tyr also had higher Fyn TK activity. Fyn TK inhibition abolished the pAPP-Tyr and reduced Aß42 secretion in AD neurons. In addition, the multidomain adaptor protein Fe65 controlled the Fyn-mediated pAPP-Tyr, warranting the possibility of targeting the Fe65-APP-Fyn pathway to develop innovative strategies in AD. Altogether, these results strongly emphasize the relevance of focusing on pAPP Tyr682 either for diagnostic purposes, as an early biomarker of the disease, or for pharmacological targeting, using Fyn TKI.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Tirosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/genética , Transfecção
10.
Mol Ther Nucleic Acids ; 18: 1063-1071, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31791013

RESUMO

It has been demonstrated that the K+-dependent Na+/Ca2+ exchanger, NCKX2, is a new promising stroke neuroprotective target. However, because no pharmacological activator of NCKX2 is still available, microRNA (miRNA) may represent an alternative method to modulate NCKX2 expression. In particular, by bioinformatics analysis, miR-223-5p emerged as a possible modulator of NCKX2 expression. In the light of these premises, the aims of the present study were: (1) to evaluate miR-223-5p and NCKX2 expression in the temporoparietal cortex and striatum of rats subjected to transient middle cerebral artery occlusion; (2) to evaluate whether miR-223-5p targets the 3' UTR of the NCKX2 transcript; and (3) to evaluate the effect of miR-223-5p modulation on brain ischemic volume and neurological deficits. Our results showed that miR-223-5p expression increased in a time-dependent manner in the striatum of ischemic rats in parallel with NCKX2 downregulation, and that the transfection of cortical neurons with miR-223-5p induced a reduction of NCKX2 expression. Moreover, a luciferase assay showed that miR-223-5p specifically interacts with the NCKX2 3' UTR subregion (+7037 to +8697), thus repressing NCKX2 translation. More interestingly, intracerebroventricular infusion of anti-miR-223-5p prevented NCKX2 downregulation after ischemia, thus promoting neuroprotection. The present findings support the idea that blocking miR-223-5p by antimiRNA is a reasonable strategy to reduce the neurodetrimental effect induced by NCKX2 downregulation during brain ischemia.

11.
Neurotoxicology ; 71: 6-15, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30503815

RESUMO

In humans, mutation of glycine 93 to alanine of Cu++/Zn++ superoxide dismutase type-1 (SOD1-G93 A) has been associated to some familial cases of Amyotrophic Lateral Sclerosis (ALS). Several evidence proposed the involvement of environmental pollutants that like mercury could accelerate ALS symptoms. SH-SY5Y cells stably transfected with SOD1 and G93 A mutant of SOD1 constructs were exposed to non-toxic concentrations (0.01 µM) of ethylmercury thiosalicylate (thimerosal) for 24 h. Interestingly, we found that thimerosal, in SOD1-G93 A cells, but not in SOD1 cells, reduced cell survival. Furthermore, thimerosal-induced cell death occurred in a concentration dependent-manner and was prevented by the Sirtuin 1 (SIRT1) activator Resveratrol (RSV). Moreover, thimerosal decreased the protein expression of transcription factor Downstream Regulatory Element Antagonist Modulator (DREAM), but not DREAM gene. Interestingly, DREAM reduction was blocked by co-treatment with RSV, suggesting the participation of SIRT1 in determining this effect. Immunoprecipitation experiments in SOD1-G93 A cells exposed to thimerosal demonstrated that RSV increased DREAM deacetylation and reduced its polyubiquitination. In addition, RSV counteracted thimerosal-enhanced prodynorphin (PDYN) mRNA, a DREAM target gene. Furthermore, cortical neurons transiently transfected with SOD1-G93 A construct and exposed to thimerosal (0.5 µM/24 h) showed a reduction of DREAM and an up-regulation of the prodynorphin gene. Importantly, both the treatment with RSV or the transfection of siRNA against prodynorphin significantly reduced thimerosal-induced neurotoxicity, while DREAM knocking-down potentiated thimerosal-reduced cell survival. These results demonstrate the particular vulnerability of SOD1-G93 A neuronal cells to thimerosal and that RSV via SIRT1 counteracts the neurodetrimental effect of this toxicant by preventing DREAM reduction and prodynorphin up-regulation.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Resveratrol/administração & dosagem , Transdução de Sinais , Superóxido Dismutase/metabolismo , Timerosal/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Encefalinas/metabolismo , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Precursores de Proteínas/metabolismo , Ratos Wistar , Proteínas Repressoras/metabolismo , Sirtuína 1/metabolismo , Superóxido Dismutase-1/metabolismo
12.
J Neurosci Methods ; 310: 63-74, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287283

RESUMO

BACKGROUND: In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS: The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS: The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.


Assuntos
Encéfalo/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Animais , Humanos
13.
Front Neurosci ; 12: 510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131665

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS). Approximately 20% of fALS is associated with inherited mutations in the Cu, Zn-superoxide dismutase 1 (SOD1) gene. In the last decade, ionic homeostasis dysregulation has been proposed as the main trigger of the pathological cascade that brings to motor-neurons loss. In the light of these premises, the present review will analyze the involvement in ALS pathophysiology of the most well studied metal ions, i.e., calcium, sodium, iron, copper and zinc, with particular focus to the role of ionic channels and transporters able to contribute in the regulation of ionic homeostasis, in order to propose new putative molecular targets for future therapeutic strategies to ameliorate the progression of this devastating neurodegenerative disease.

14.
Cell Death Dis ; 9(7): 725, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941946

RESUMO

Na+-Ca2+ exchanger (NCX) isoforms constitute the major cellular Ca2+ extruding system in neurons and microglia. We herein investigated the role of NCX isoforms in the pathophysiology of Parkinson's disease (PD). Their expression and activity were evaluated in neurons and glia of mice expressing the human A53T variant of α-synuclein (A53T mice), an animal model mimicking a familial form of PD. Western blotting revealed that NCX3 expression in the midbrain of 12-month old A53T mice was lower than that of wild type (WT). Conversely, NCX1 expression increased in the striatum. Immunohistochemical studies showed that glial fibrillary acidic protein (GFAP)-positive astroglial cells significantly increased in the substantia nigra pars compacta (SNc) and in the striatum. However, the number and the density of tyrosine hydroxylase (TH)-positive neurons decreased in both brain regions. Interestingly, ionized calcium binding adaptor molecule 1 (IBA-1)-positive microglial cells increased only in the striatum of A53T mice compared to WT. Double immunostaining studies showed that in A53T mice, NCX1 was exclusively co-expressed in IBA-1-positive microglial cells in the striatum, whereas NCX3 was solely co-expressed in TH-positive neurons in SNc. Beam walking and pole tests revealed a reduction in motor performance for A53T mice compared to WT. In vitro experiments in midbrain neurons from A53T and WT mice demonstrated a reduction in NCX3 expression, which was accompanied by mitochondrial overload of Ca2+ ions, monitored with confocal microscopy by X-Rhod-1 fluorescent dye. Collectively, in vivo and in vitro findings suggest that the reduction in NCX3 expression and activity in A53T neurons from midbrain may cause mitochondrial dysfunction and neuronal death in this brain area, whereas NCX1 overexpression in microglial cells may promote their proliferation in the striatum.


Assuntos
Inflamação/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Citosol/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/complicações , Inflamação/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Microglia/metabolismo , Mitocôndrias/metabolismo , Atividade Motora , Neostriado/metabolismo , Neostriado/patologia , Degeneração Neural/complicações , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Isoformas de Proteínas/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Cell Death Dis ; 9(2): 206, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434186

RESUMO

Preconditioning (PC) is a phenomenon wherein a mild insult induces resistance to a later, severe injury. Although PC has been extensively studied in several neurological disorders, no studies have been performed in amyotrophic lateral sclerosis (ALS). Here we hypothesize that a sub-toxic acute exposure to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA) is able to delay ALS progression in SOD1 G93A mice and that NCX3, a membrane transporter able to handle the deregulation of ionic homeostasis occurring during ALS, takes part to this neuroprotective effect. Preconditioning effect was examined on disease onset and duration, motor functions, and motor neurons in terms of functional declines and severity of histological damage in male and female mice. Our findings demonstrate that a sub-toxic dose of L-BMAA works as preconditioning stimulus and is able to delay ALS onset and to prolong ALS mice survival. Interestingly, preconditioning prevented NCX3 downregulation in SOD1 G93A mice spinal cord, leading to an increased number of motor neurons associated to a reduced astrogliosis, and reduced the denervation of neuromuscular junctions observed in SOD1 G93A mice. These protective effects were mitigated in ncx3+/- mice. This study established for the first time an animal model of preconditioning in ALS and candidates NCX3 as a new therapeutic target.


Assuntos
Diamino Aminoácidos/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Regulação para Baixo/efeitos dos fármacos , Neurotoxinas/farmacologia , Trocador de Sódio e Cálcio/biossíntese , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Animais , Toxinas de Cianobactérias , Camundongos , Camundongos Transgênicos , Trocador de Sódio e Cálcio/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
16.
Front Neurosci ; 11: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154524

RESUMO

The molecular pathways involved in methylmercury (MeHg)-induced neurotoxicity are not fully understood. Since pan-Histone deacetylases (HDACs) inhibition has been found to revert the neurodetrimental effect of MeHg, it appeared of interest to investigate whether the pattern of HDACs isoform protein expression is modified during MeHg-induced neurotoxicity and the transcriptional/transductional mechanisms involved. SH-SY5Y neuroblastoma cells treated with MeHg 1 µM for 12 and 24 h showed a significant increase of HDAC4 protein and gene expression, whereas the HDACs isoforms 1-3, 5, and 6 were unmodified. Furthermore, MeHg-induced HDAC4 increase was reverted when cells were transfected with siRNAs against specificity protein 1 (Sp1) and Sp4, that were both increased during MeHg exposure. Next we studied the role of extracellular-signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (MAPKs) in MeHg-induced increase of Sp1, Sp4, and HDAC4 expression. As shown by Western Blot analysis MeHg exposure increased the phosphorylation of p38, but not of ERK and JNK. Notably, when p38 was pharmacologically blocked, MeHg-induced Sp1, Sp4 protein expression, and HDAC4 protein and gene expression was reverted. In addition, MeHg exposure increased the binding of HDAC4 to the promoter IV of the Brain-derived neurotrophic factor (BDNF) gene, determining its mRNA reduction, that was significantly counteracted by HDAC4 knocking down. Furthermore, rat cortical neurons exposed to MeHg (1 µM/24 h) showed an increased phosphorylation of p38, in parallel with an up-regulation of Sp1, Sp4, and HDAC4 and a down-regulation of BDNF proteins. Importantly, transfection of siRNAs against p38, Sp1, Sp4, and HDAC4 or transfection of vector overexpressing BDNF significantly blocked MeHg-induced cell death in cortical neurons. All these results suggest that p38/Sp1-Sp4/HDAC4/BDNF may represent a new pathway involved in MeHg-induced neurotoxicity.

18.
Toxicol Sci ; 154(2): 227-240, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27660204

RESUMO

Ethylmercury thiosalicylate (thimerosal) is an organic mercury-based compound commonly used as an antimicrobial preservative that has been found to be neurotoxic. In contrast, histone deacetylases (HDACs) inhibition has been found to be neuroprotective against several environmental contaminants, such as polychlorinated biphenyls, di-2-ethylhexyl phthalate, and methylmercury. The aim of this study was to investigate the effect of HDAC inhibition on thimerosal-induced neurotoxicity in neuroblastoma cells and cortical neurons. Interestingly, we found that thimerosal, at 0.5 µM in SH-SY5Y cells and at 1 µM in neurons, caused cell death by activation of apoptosis, which was prevented by the HDAC class IIA inhibitor MC1568 but not the class I inhibitor MS275. Furthermore, thimerosal specifically increased HDAC4 protein expression but not that of HDACs 5, 6, 7, and 9. Western blot analysis revealed that MC1568 prevented thimerosal-induced HDAC4 increase. In addition, both HDAC4 knocking-down and MC1568 inhibited thimerosal-induced cell death in SH-SY5Y cells and cortical neurons. Importantly, intramuscular injection of 12 µg/kg thimerosal on postnatal days 7, 9, 11, and 15 increased HDAC4 levels in the prefrontal cortex (PFC), which decreased histone H4 acetylation in infant male rats, in parallel increased motor activity changes. In addition, coadministration of 40 mg/kg MC1568 (intraperitoneal injection) moderated the HDAC4 increase which reduced histone H4 deacetylation and caspase-3 cleavage in the PFC. Finally, open-field testing showed that thimerosal-induced motor activity changes are reduced by MC1568. These findings indicate that HDAC4 regulates thimerosal-induced cell death in neurons and that treatment with MC1568 prevents thimerosal-induced activation of caspase-3 in the rat PFC.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Pirróis/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Timerosal/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citoproteção , Relação Dose-Resposta a Droga , Histona Desacetilases/genética , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Interferência de RNA , Ratos Wistar , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima
19.
Glia ; 64(10): 1677-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458821

RESUMO

Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroglia/fisiologia , Sódio/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologia
20.
Stroke ; 47(4): 1085-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26979866

RESUMO

BACKGROUND AND PURPOSE: The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning. In this study, we evaluated whether NCX3 is a target for sumoylation and whether this posttranslational modification participates in ischemic preconditioning-induced neuroprotection. To test these hypotheses, we analyzed (1) SUMO1 conjugation pattern after ischemic preconditioning; (2) the effect of SUMO1 knockdown on the ischemic damage after transient middle cerebral artery occlusion and ischemic preconditioning, (3) the possible interaction between SUMO1 and NCX3 and (4) the molecular determinants of NCX3 sequence responsible for sumoylation. METHODS: Focal brain ischemia and ischemic preconditioning were induced in rats by middle cerebral artery occlusion. SUMOylation was evaluated by western blot and immunohistochemistry. SUMO1 and NCX3 interaction was analyzed by site-directed mutagenesis and immunoprecipitation assay. RESULTS: We found that (1) SUMO1 knockdown worsened ischemic damage and reduced the protective effect of preconditioning; (2) SUMO1 bound to NCX3 at lysine residue 590, and its silencing increased NCX3 degradation; and (3) NCX3 sumoylation participates in SUMO1 protective role during ischemic preconditioning. Thus, our results demonstrate that NCX3 sumoylation confers additional neuroprotection in ischemic preconditioning. CONCLUSIONS: Finally, this study suggests that NCX3 sumoylation might be a new target to enhance ischemic preconditioning-induced neuroprotection.


Assuntos
Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Precondicionamento Isquêmico , Neuroproteção/fisiologia , Proteína SUMO-1/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Encéfalo/patologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA