Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; : 109973, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39426641

RESUMO

The Vibrio parahaemolyticus strain causing acute hepatopancreatic necrosis disease (AHPND) in shrimp secretes toxins A and B (PirAVp/PirBVp). These toxins have been implicated in pathogenesis and are targets for developing anti-AHPND therapeutics or prophylactics that include passive immunization. We have previously reported that Ccombodies (recombinant hagfish variable lymphocyte receptor B antibodies; VLRB) targeting PirBVp conferred protection against V. parahaemolyticus in shrimp when administered as a feed supplement. In this study, we screened a phage-displayed library of engineered VLRBs for PirAVp-targeting Ccombodies that were mass-produced in a bacterial expression system. We then introduced these Ccombodies into the diet of Pacific white shrimp (Penaeus vannamei) over a seven-day period. Subsequently, the shrimp were exposed to a challenge with V. parahaemolyticus. Mortality rates were then observed and recorded over the following seven days. Administering shrimp feed supplemented with Ccombodies at a high dose (100 mg per 100 g feed) reduced mortality in recipient animals (2.96-5.19%) statistically similar to mock-challenged control (1.48%), but significantly different from the Ccombody-deficient control (74.81%). This suggests that the Ccombodies provided strong protection against the bacterium. Feeding shrimp with a median dose (10 mg/100 g feed) gave statistically comparable low mortality (5.93-6.67%) as the high dose. Reducing the Ccombody dose to 1 mg/100 g feed showed variable effects. Ccombody A2 showed mortality (11.85%) significantly lower than that of the Ccombody-deficient group (74.81%), suggesting that it can effectively protect against the bacterial challenge at a low dose. Our results demonstrate the ability of the phage-displayed VLRB library to generate antigen-specific Ccombodies rapidly and simply, with the expression of high protein levels in bacteria. The protective effect provided by these Ccombodies aligns with our earlier results, strongly supporting the use of VLRB antibodies as a substitute for IgY in passive immunoprophylaxis against AHPND in shrimp.

2.
PLoS Pathog ; 20(8): e1012400, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39133742

RESUMO

Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.


Assuntos
Genoma Bacteriano , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/genética , Animais , Humanos , Bovinos , Especificidade de Hospedeiro/genética , Genômica , Peixes/microbiologia , Filogenia
3.
Fish Shellfish Immunol ; 152: 109773, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019124

RESUMO

Fish nocardiosis is a chronic disease mainly caused by Nocardia seriolae, which occurs in a variety of economically cultured freshwater and marine fish. Studies have shown that DNA vaccine is an effective treatment to protect fish from bacterial infection. In our previous experiment, an in vivo-induced gene of N. seriolae, encoding phosphoketolase (PK) family protein, was identified by in vivo-induced antigen technology. In the present study, the antigenic gene encoding PK family protein was analyzed by bioinformatics and further inserted into the eukaryotic expression vector pcDNA3.1-myc-his-A for DNA vaccine development. The immunological effects of pcDNA-PK DNA vaccine were assessed in hybrid snakehead (Channa maculata ♀ × Channa argus ♂), showing induction in several serum enzyme activity parameters (including LZM, SOD, ACP and AKP), increasing in specific-antibody IgM levels, as well as up-regulation in six immune-related genes (CD4, CD8α, TNFα, IL-1ß, MHCIα and MHCIIα). Moreover, an immune-protection with a relative survival rate was provided at 53.82 % following artificial challenge with N. seriolae in vaccinated fish in comparison to the control group. In summary, these results indicate that pcDNA-PK DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, which may be applied in aquaculture to control fish nocardiosis.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Nocardiose , Nocardia , Vacinas de DNA , Animais , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Nocardiose/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Bacterianas/imunologia , Aldeído Liases/genética , Aldeído Liases/imunologia , Peixes/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
4.
Acta Trop ; 253: 107183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479468

RESUMO

Chlamydiosis, an infection caused by several Chlamydia species, has been reported in Nile, saltwater, and Siamese crocodiles. Despite its widespread reports in various countries, including Thailand, genetic information on Chlamydia species remains limited. This study presents a whole-genome-based characterization of Siamese crocodile-isolated Chlamydia. The results showed that Siamese crocodile Chlamydia contained a single circular chromosome with a size of 1.22-1.23 Mbp and a plasmid with a size of 7.7-8.0 kbp. A plasmid containing eight coding sequences (CDSs) was grouped in a ß lineage. A chromosome sequence had approximately 1,018-1,031 CDSs. Chlamydial factors involving virulence were documented in terms of the presence of cytotoxins and several virulence factors in the chromosomes of Siamese crocodile Chlamydia. The analysis of antimicrobial resistance genes in the Chlamydia genome revealed that the most common resistance genes were associated with aminoglycosides, fluoroquinolones, macrolides, tetracyclines, and cephalosporins, with loose matching (identities between 21.12 % and 74.65 %). Phylogenetic analyses, encompassing the assessments of both whole proteome and nine taxonomic markers, revealed that Siamese crocodile Chlamydia was separated into three lineages (lineages I-III) with high bootstrapping statistic support. Interestingly, isolate 12-01 differed genetically from the others, suggesting that it is a new member of Chlamydia. The study findings indicate that Siamese crocodiles are susceptible hosts to Chlamydia, involving more than one species. This study is the first employing the highest number of whole-genome data on Siamese crocodile Chlamydia and provides better insights into pathogen genetics.


Assuntos
Jacarés e Crocodilos , Chlamydia , Animais , Filogenia , Chlamydia/genética , Antibacterianos/farmacologia , Tailândia
5.
Fish Shellfish Immunol ; 147: 109410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309489

RESUMO

Nocardia seriolae has been identified as the causative agent of fish nocardiosis, resulting in serious economic losses in aquaculture. With an aim to screen potential candidates for vaccine development against N. seriolae, the in vivo-induced genes of N. seriolae in hybrid snakehead (Channa maculate ♀ × Channa argus ♂) model were profiled via in vivo-induced antigen technology (IVIAT) in the present study, and 6 in vivo-induced genes were identified as follows: IS701 family transposase (is701), membrane protein insertase YidC (yidC), ergothioneine biosynthesis glutamate-cysteine ligase (egtA), molybdopterin respectively-dependent oxidoreductase (mol), phosphoketolase family protein (Ppl), hypothetical protein 6747 (hp6747). Additionally, the yidC was inserted into eukaryotic expression vector pcDNA3.1-myc-his-A to construct a DNA vaccine named as pcDNA-YidC to evaluate immunoprotection in hybrid snakehead after artificial challenge with N. serioale. Results showed that the transcription of yidC was detected in spleen, trunk kidney, muscle and liver in vaccinated fish, suggesting that this antigenic gene can be recombinantly expressed in fish. Meanwhile, indexes of humoral immunity were evaluated in the vaccinated fish through assessing specific-antibody IgM and serum enzyme activities, including lysozyme (LZM), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Quantitative real-time PCR analysis indicated that pcDNA-YidC DNA vaccine could notably enhance the expression of immune-related genes (CD4、CD8α、MHCIIα、TNFα、IL-1ß and MHCIα) in 4 tissues (spleen, trunk kidney, muscle and liver) of the vaccinated fish. Finally, an immuno-protection with a relative survival rate of 65.71 % was displayed in vaccinated fish in comparison to the control groups. Taken together, these results indicate that pcDNA-YidC DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, indicating that IVIAT is a helpful strategy to screen the highly immunogenic antigens for vaccine development against fish nocardiosis.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Vacinas de DNA , Animais , Peixes
6.
Acta Vet Scand ; 65(1): 50, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008768

RESUMO

BACKGROUND: Although Chlamydia sp. causes widespread disease outbreaks in juvenile crocodiles in Thailand, data regarding the epidemiology, and risk factors of such infections are limited. The aim of this study was to investigate the prevalence and possible risk factors associated with Chlamydia sp. infections on Siamese crocodile (Crocodylus siamensis) farms in Thailand. A cross-sectional study was conducted from July to December 2019. Samples were collected from 40 farms across six regions in Thailand. Conjunctival, pharyngeal, and cloacal swab samples were analyzed for Chlamydiaceae nucleic acids using semi-nested PCR followed by phylogenetic analysis based on the ompA gene fragment. Risk factors of infection were analyzed using chi-square and univariate regression to calculate odds ratios. RESULTS: The prevalence of Chlamydia sp. infection across all regions was 65%. The ompA phylogenetic analysis showed that Chlamydia sp. detected in this study was genetically closely related to Chlamydia crocodili and Chlamydia caviae. The risk factors for infection were water source, reusing treated wastewater from the treatment pond, not disposing of leftover food, low frequency of water replacement in the enclosure of juvenile crocodiles, and lack of water replacement after the death of a crocodile. CONCLUSION: The prevalence of Chlamydia sp. infection in farmed crocodiles in Thailand was 65% during the study period. Cloacal swabs were superior to conjunctival and pharyngeal swabs due to their higher sensitivity in detecting Chlamydia sp., as well as their lower invasiveness. Good management and biosecurity in crocodile farming can reduce the risk of Chlamydia sp.


Assuntos
Jacarés e Crocodilos , Chlamydia , Animais , Tailândia/epidemiologia , Fazendas , Filogenia , Estudos Transversais , Chlamydia/genética , Bactérias , Água
7.
PLoS One ; 18(10): e0292947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851665

RESUMO

It is well known that the Asian water monitors or Varanus salvator are both scavengers and predators. They can live and survive in the place that exposed to harmful microorganisms. Most people believe that they have some protected mechanisms to confront those infections. The aim of this study is to determine the antibacterial activities of crude peptides and protein hydrolysates extracted from serum of the Varanus salvator. Ten types of bacteria were cultured with crude peptides and protein hydrolysates which were isolated from 21 Varanus salvator's serum. The crude peptides showed some interested inhibition percentages against Enterobacter aerogenes ATCC13048 = 25.6%, Acinetobacter baumannii ATCC19606 = 33.4%, Burkholderia cepacia ATCC25416 = 35.3% and Pseudomonas aeruginosa ATCC27853 = 25.8%, whereas the protein hydrolysates had some inhibition potential on Burkholderia cepacia ATCC25416 = 24.3%. For the rest results of other tests were below 20% of inhibition. In addition, the evidences show that crude peptides have better antibacterial performances significantly than protein hydrolysates on most tested bacteria. Furthermore, antimicrobial peptides prediction shows about 10 percent hit (41/432 sequences). The interpretation shows that the best hit sequence is highly hydrophobic. It may destroy outer membrane of Gram-negative hence prevents the invasion of those bacteria. Altogether, bioinformatics and experiments show similar trends of antimicrobial peptide efficacy from Varanus salvator. Further studies need to be conducted on peptide purification and antimicrobial peptide candidate should be identified.


Assuntos
Antibacterianos , Hidrolisados de Proteína , Humanos , Hidrolisados de Proteína/farmacologia , Antibacterianos/química , Bactérias , Peptídeos/farmacologia , Peptídeos Antimicrobianos , Água , Testes de Sensibilidade Microbiana
8.
Pathogens ; 12(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111411

RESUMO

Group B Streptococcus (GBS) is a major pathogen of humans and aquatic species. Fish have recently been recognized as the source of severe invasive foodborne GBS disease, caused by sequence type (ST) 283, in otherwise healthy adults in Southeast Asia. Thailand and Vietnam are among the major aquaculture producers in Southeast Asia, with GBS disease reported in fish as well as frogs in both countries. Still, the distribution of potentially human-pathogenic GBS in aquaculture species is poorly known. Using 35 GBS isolates from aquatic species in Thailand collected from 2007 to 2019 and 43 isolates from tilapia collected in Vietnam in 2018 and 2019, we have demonstrated that the temporal, geographical, and host-species distribution of GBS ST283 is broader than previously known, whereas the distribution of ST7 and the poikilothermic lineage of GBS are geographically restricted. The gene encoding the human GBS virulence factor C5a peptidase, scpB, was detected in aquatic ST283 from Thailand but not in ST283 from Vietnam or in ST7 from either country, mirroring current reports of GBS strains associated with human sepsis. The observed distribution of strains and virulence genes is likely to reflect a combination of spill-over, host adaptation through the gain and loss of mobile genetic elements, and current biosecurity practices. The plastic nature of the GBS genome and its importance as a human, aquatic, and potentially foodborne pathogen suggests that active surveillance of GBS presence and its evolution in aquaculture systems may be justified.

9.
Vet Sci ; 10(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851433

RESUMO

Nile tilapia is one of the most consumed farmed fish in the world. The outbreak of pathogenic bacterial diseases causes high mortality rates and economic losses in Nile tilapia farming. Antibiotic administrations are commonly utilized to inhibit and prevent bacterial infections. However, antibiotics are expensive and cause serious concerns for antibiotic resistance in fish that can be potentially transferred to humans. As an alternative solution, probiotics can be used to prevent infection of pathogenic bacteria in fish. In this work, both bacteria and yeast were isolated from fish gastrointestinal tracts and their inhibitory activity against Nile tilapia pathogenic bacteria was evaluated, as well as other probiotic properties. In this study, 66 bacteria and 176 acid tolerant yeasts were isolated from fish gastrointestinal tracts. Of all isolated microorganisms, 39 bacterial and 15 yeast isolates with inhibitory effect against pathogens were then examined for their probiotic properties (acidic and bile salt resistance, adhesion potential, and biofilm formation), formation of antibacterial factor survival rate under simulated gastrointestinal fluid, and safety evaluation. AT8/5 bacterial isolate demonstrated probiotic properties and the highest inhibition against all 54 tested pathogens while YON3/2 yeast isolate outperformed the inhibitory effect among all yeast isolates. These two probiotic isolates were further identified by 16S rDNA and the D1/D2 domain of 26S rDNA sequence analysis for bacterial and yeast identification, respectively. AT8/5 and YON3/2 showed the highest similarity to Lactiplantibacillus argentoratensis and Candida tropicalis, respectively. This is the first report on isolated L. argentoratensis and C. tropicalis with antipathogenic bacteria of Nile tilapia properties. Collectively, AT8/5 and YON3/2 could be potentially used as promising alternatives to existing antibiotic methods to prevent pathogenic bacteria infection in Nile tilapia farming.

10.
Vet World ; 14(7): 1908-1914, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34475716

RESUMO

BACKGROUND AND AIM: For a decade, chlamydial and herpesvirus infections have caused significant morbidity and mortality in farmed crocodiles. In September 2017, a total of 160 juvenile freshwater Siamese crocodiles (Crocodylus siamensis) with conjunctivitis/pharyngitis lesions were admitted at the Veterinary Aquatic Animal Research Health Care Unit, Faculty of Veterinary Science, Mahidol University. All crocodiles did not respond well to antibiotics or supportive treatments and died. This study aimed to detect and identify the causative agents associated with conjunctivitis/pharyngitis and fatal outcomes in juvenile farmed Siamese crocodiles. MATERIALS AND METHODS: A total of 138 pharyngeal and conjunctival swabs and conjunctival scrapes were collected from live crocodiles. All swab and scrape samples were DNA-extracted and amplified by polymerase chain reaction (PCR) using Chlamydiaceae- and herpesvirus-specific primers. Tissue samples (brain, lung, liver, heart, spleen, and intestine) were collected from two representative postmortem animals. All tissue samples were processed for molecular and pathological analyses. RESULTS: PCR examinations identified chlamydial and herpesvirus DNA in 92% (126/138) and 100% (138/138), respectively, of the tested swab and scrape samples. Of those positive samples, 79% (26/33), 67% (4/6), and 98% (97/99) of the pharyngeal swabs, conjunctival swabs, and conjunctival scrapes, respectively, were positive for both chlamydial and herpesvirus DNA. Histopathological examination indicated necrosis and mononuclear cell infiltration in the liver, kidney, and intestine of the affected animals. The intracytoplasmic accumulation of Chlamydia was randomly observed in the examined tissue sample. Moreover, the presence of chlamydial and herpesvirus DNA was also detected in the tissue samples, including the heart, intestine, brain, lung, liver, and spleen, of the affected animals by PCR. Phylogenetic analyses revealed that Chlamydia spp. detected in the juvenile Siamese crocodiles was notably different from other known species in the Chlamydia genus, while the herpesvirus detected in the crocodiles was closely related to crocodyline herpesvirus 1. CONCLUSION: Based on histopathological and molecular examinations, this report provided the first evidence of coinfection of Chlamydia spp. and crocodyline herpesvirus 1 in juvenile Siamese crocodiles in Thailand.

11.
J Fish Dis ; 43(10): 1229-1236, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32974952

RESUMO

Streptococcus agalactiae secrete virulence factors believed to be able of killing host tissues, especially under elevated water temperature. A direct effect of S. agalactiae secretory products on tilapia cells was tested on the tilapia kidney (TK-1) cell culture. The bacteria were cultured under four different temperature levels: 22, 29, 32 and 37°C; the cell-free portion was processed through SDS-PAGE; and distinct bands were identified by LC-MS/MS. At least, three virulence factors were identified, Bsp, PcsB and CAMP factor, with increasing levels as the cultured temperature rose. Expressions of bsp, pcsB and cfb were also up-regulated with the rising of the temperature in S. agalactiae culture. The supernatant from the bacteria cultured under specified temperatures was added into TK-1 cell-cultured wells. Morphological damage and mortality of the cultured cells, as determined by MTT method, were increased progressively from the supernatant treatment according to the rise of temperature in S. agalactiae culture. This study suggests that the production of the three virulence factors of S. agalactiae reported herein is temperature-dependent, and it is likely that CAMP factor directly kills the TK-1 cells since the other two types of protein are involved in S. agalactiae cell division and the bacterial adherence to host tissues.


Assuntos
Proteínas de Bactérias/toxicidade , Streptococcus agalactiae/patogenicidade , Tilápia/microbiologia , Fatores de Virulência/toxicidade , Animais , Aderência Bacteriana , Linhagem Celular , Doenças dos Peixes/microbiologia , Temperatura
12.
Microsc Res Tech ; 83(8): 877-888, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32243694

RESUMO

One of the clinical manifestations of streptococcosis is swimming errors of the infected fish, which is likely caused by lesions in the brain. As most studies described brain histopathology in streptococcosis as meningitis, with a limited description of lesions in the whole brain, the aim of this study was therefore to explore histopathology of the whole brain of red tilapia experimentally infected with Streptococcus agalactiae serotype III. Transcripts relating to motoneuron functions and inflammatory responses were also investigated. In the S. agalactiae-infected fish, the parenchyma of the whole brain and its associated meninx primitiva were found to be markedly infiltrated by mononuclear cells and Gram-positive cocci. Hemorrhage, neuronal necrosis, and localized spongiform histopathology were observed, especially within the midbrain and the cerebellum. The lesion was observed in the medial longitudinal fasciculus and its nucleus. Expressions of the transcripts CD166, GAP43, SMN, and SV2B of the infected fish did not change, while those of IL-1ß and TNF-α were significantly upregulated. It is likely that S. agalactiae cause extensive damage to the fish brain, especially in areas that control swimming activities, through both direct invasion of the bacteria and acute inflammatory responses of the brain resident macrophages, or microglia.


Assuntos
Encéfalo/patologia , Doenças dos Peixes/patologia , Meningite/patologia , Infecções Estreptocócicas/veterinária , Tilápia/microbiologia , Animais , Encéfalo/microbiologia , Doenças dos Peixes/microbiologia , Meningite/microbiologia , Meningite/veterinária , Neurônios Motores/microbiologia , Neurônios Motores/patologia , Tecido Parenquimatoso/microbiologia , Tecido Parenquimatoso/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus agalactiae , Natação/fisiologia
13.
Fish Shellfish Immunol ; 81: 221-232, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30017930

RESUMO

In this study we examined the effect that a Francisella noatunensis (Fno) infection had on hybrid red tilapia (Oreochromis niloticus × Oreochromis mossambicus) subsquently infected with Streptococcus agalactiae. A variety of hemato-immunological parameters (haematocrit, total red blood cell count, mean corpuscular volume, total white blood and differential cell counts, total plasma protein, plasma lysozyme and plasma peroxidase activities, and respiratory burst and phagocytic activities of head-kidney macrophages) were measured in hybrid red tilapia that had been previously exposed to an Fno outbreak in a tilapia grow-out farm. The head-kidneys of these apparently healthy survivors, when checked by PCR were found to be Fno-positive with hemato-immunological parameters that were similar to fish without an a priori infection. The only exception was the percentage lymphocyte count in the peripheral blood, which was slightly, but significantly, lower in the Fno-infected fish, compared to those without the infection. When experimentally infected with S. agalactiae, the Fno-infected fish died more rapidly and at a significantly higher rate than fish without the infection. During the challenge, the hemato-immunological parameters of both groups of fish were very similar, although the Fno-infected fish, challanged with S. agalactiae expressed significantly higher plasma lysozyme and peroxidase activities, and their head kidney macrophages had significantly higher respiratory burst activity compared to non-Fno-infected fish challanged with S. agalactiae. The only two parameters for which Fno-infected fish showed significantly lower expressions than that of their non-infected counterparts were haematocrit and total red blood cell count. The cause of the rapidity and higher rates of mortality observed in the Fno-infected fish when challenged with S. agalactiae is unknown; but it may be due to a reduced erythropoiesis capability within the head-kidney because of the presence of Fno.


Assuntos
Doenças dos Peixes/imunologia , Francisella , Infecções por Bactérias Gram-Negativas/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae , Tilápia/imunologia , Animais , Coinfecção , Infecções por Bactérias Gram-Negativas/veterinária , Rim Cefálico/imunologia , Macrófagos/imunologia , Infecções Estreptocócicas/veterinária
14.
Fish Shellfish Immunol ; 47(1): 595-605, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26439415

RESUMO

Pangasianodon hypophthalmus (striped catfish) is an important aquaculture species and intensification of farming has increased disease problems, particularly Edwardsiella ictaluri. The effects of feeding ß-glucans on immune gene expression and resistance to E. ictaluri in P. hypophthalmus were explored. Fish were fed 0.1% fungal-derived ß-glucan or 0.1% commercial yeast-derived ß-glucan or a basal control diet without glucan. After 14 days of feeding, the mRNA expression of immune genes (transferrin, C-reactive protein, precerebellin-like protein, Complement C3 and factor B, 2a MHC class II and interleukin-1 beta) in liver, kidney and spleen were determined. Following this fish from each of the three diet treatment groups were infected with E. ictaluri and further gene expression measured 24 h post-infection (h.p.i.), while the remaining fish were monitored over 2 weeks for mortalities. Cumulative percentage mortality at 14 days post-infection (d.p.i.) was less in ß-glucan fed fish compared to controls. There was no difference in gene expression between dietary groups after feeding for 14 days, but there was a clear difference between infected and uninfected fish at 24 h.p.i., and based on principal component analysis ß-glucans stimulated the overall expression of immune genes in the liver, kidney and spleen at 24 h.p.i.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , beta-Glucanas/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Edwardsiella ictaluri/fisiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , beta-Glucanas/administração & dosagem
15.
Fish Shellfish Immunol ; 45(2): 357-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921238

RESUMO

Immunostimulants are food additives used by the aquaculture industry to enhance the immune response of fish, and although ß-glucans are now commonly used for this purpose in aquaculture, little is known about their effects on the immune response of Pangasianodon hypophthalmus. Thus, a variety of immune parameters (e.g. phagocytosis, respiratory burst, lysozyme, complement, peroxidase, total protein, total anti-protease, total IgM, natural antibody titres, and specific IgM titres) was examined in this species after feeding fish with a basal control diet or diets supplemented with 0.05, 0.1, or 0.2 g/kg fungal-derived ß-glucan or 0.1% commercial yeast-derived ß-glucan, as a positive control diet, for a period of four weeks. The effect of the glucans on disease resistance was then evaluated by experimentally infecting the fish with Edwardsiella ictaluri by immersion and mortalities monitored for 14 days. Samples were collected from fish for analysis at 0, 1, 3, 7, 14, 21 and 28 days post-feeding (dpf), and also at 14 days post infection (dpi). The lowest dose of fungal-derived ß-glucan (0.05%) appeared insufficient to effectively stimulate the immune response of the fish, while those fed with the two highest levels of fungal-derived ß-glucan had enhanced immune responses compared to the control group. Significantly elevated levels of respiratory burst activity on all days examined (P < 0.05) and lysozyme activity on 7 dpf were found in the group fed 0.2% fungal-derived ß-glucan, while plasma anti-protease activity was significantly enhanced (P < 0.05) by 21 dpf, natural antibody titres by 3 dpf and complement activity by 7 dpf and also at 14 dpi in the group fed 0.1% fungal-derived ß-glucan. No statistical differences was seen in the level of mortalities between the dietary groups, although the group fed with the control diet had the highest level of mortalities and the groups fed with commercial yeast-derived ß-glucan and 0.2% fungal-derived ß-glucan the lowest.


Assuntos
Adjuvantes Imunológicos/farmacologia , Peixes-Gato , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , beta-Glucanas/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Edwardsiella ictaluri/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , beta-Glucanas/administração & dosagem
16.
Fish Shellfish Immunol ; 40(2): 374-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064539

RESUMO

Aquaculture production of Pangasianodon hypophthalmus is growing rapidly in South East Asia, especially in Vietnam. As it is a relatively new aquaculture species there are few reports evaluating its immune response to pathogens. Thus, functional assays for P. hypophthalmus were optimised to evaluate both innate and adaptive immune responses, and were then used to examine immune response following stimulation with live and heat-killed Aeromonas hydrophila. These were used as models of infection and vaccination, respectively. Four treatment groups were used, including a control group, a group injected intraperitonally (IP) with adjuvant only, a group injected with heat-killed A. hydrophila (1 × 10(9) cfu ml(-1) mixed with adjuvant), and a group injected with a subclinical dose of live A. hydrophila. Samples were collected at 0, 1, 3, 7, 14 and 21 days post-injection (d.p.i.) to assess their immune response. The results indicated that challenge with live or dead bacteria stimulated the immune response in P. hypophthalmus significantly above the levels observed in control groups with respect to specific antibody titre, plasma lysozyme and peroxidase activity, and phagocytosis by head kidney macrophages at 7 or/and 14 d.p.i. At 21 d.p.i., total and specific antibody (IgM) levels and plasma lysozyme activity in fish injected with either live or dead A. hydrophila were significantly different to the control groups. Differential immune responses were observed between fish injected with either live or dead bacteria, with live A. hydrophila significantly stimulating an increase in WBC counts and plasma peroxidase activity at 3 d.p.i., with the greatest increase in WBC counts noted at 21 d.p.i. and in phagocytosis at 14 d.p.i. By 21 d.p.i. only the macrophages from fish injected with dead A. hydrophila showed significantly stimulation in their respiratory burst activity. This study provides basic information on the immune response in pangasius catfish that can be useful in the health control of this species.


Assuntos
Aeromonas hydrophila/imunologia , Peixes-Gato , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Imunoensaio/veterinária , Vacinação/veterinária , Adjuvantes Imunológicos/farmacologia , Animais , Aquicultura/normas , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunoensaio/normas , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA