Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(42): 28171-28181, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723015

RESUMO

This work reports the fabrication of nanomagnetite- and nanotitania-incorporated polyacrylonitrile nanofibers (MTPANs) by an electrospinning process, which has the potential to be used as a membrane material for the selective removal of Cd(II) and As(V) in water. The fiber morphology was characterized by scanning electron microscopy (SEM). The incorporation of nanomagnetite and nanotitania in the composite fiber matrix was confirmed by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The fibers doped with nanomagnetite and nanotitania (MPAN and TPAN fibers, respectively), as well as MTPAN and neat polycrylonitrile (PAN) fibers, after thermally stabilizing at 275 °C in air, were assessed for their comparative As(V)- and Cd(II)-ion removal capacities. The isotherm studies indicated that the highest adsorption of Cd(II) was shown by MTPAN, following the Langmuir model with a q m of 51.5 mg/m2. On the other hand, MPAN showed the highest As(V)adsorption capacity, following the Freundlich model with a K F of 0.49. The mechanism of adsorption of both Cd(II) and As(V) by fibers was found to be electrostatically driven, which was confirmed by correlating the point of zero charges (PZC) exhibited by fibers with the pH of maximum ion adsorptions. The As(V) adsorption on MPAN occurs by an inner-sphere mechanism, whereas Cd(II) adsorption on MTPAN is via both surface complexation and an As(V)-assisted inner-sphere mechanism. Even though the presence of coexistent cations, Ca(II) and Mg(II), has been shown to affect the Cd(II) removal by MTPAN, the MTPAN structure shows >50% removal efficiency even for minute concentrations (0.5 ppm) of Cd(II) in the presence of high common ion concentrations (10 ppm). Therefore, the novel polyacrylonitrile-based nanofiber material has the potential to be used in polymeric filter materials used in water purification to remove As(V) and Cd(II) simultaneously.

2.
Chem Cent J ; 12(1): 18, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29468333

RESUMO

Clean water, which is free from pathogens and toxic chemicals, is vital to human health. The blue planet is encountering remarkable challenges in meeting the ever-increasing demands of clean water. The intention of this research study was to develop a water filter material that is capable of removing bacterial contaminants and heavy metals from fresh water using cost effective and easily fabricated biocompatible filter material. For this purpose, granular activated carbon (GAC) was coated with both hydroxyapatite (HAP) nanoflakes and turmeric extract (TE) (HAP/TE/GAC) which had been extracted from natural turmeric powder. In addition, GAC was coated only with HAP nanoflakes to synthesize HAP coated GAC (HAP/GAC) composite. Prepared HAP/GAC and HAP/TE/GAC were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy and UV-visible spectrophotometry. Antibacterial effect of the prepared nanocomposites, HAP/GAC and HAP/TE/GAC was compared with neat GAC using Gram-negative bacteria Escherichia coli. Results showed that antibacterial studies of the synthesized nanocomposites exhibit effective antibacterial activity against E. coli compared with neat GAC alone. However, the composite HAP/TE/GAC revealed better activity than HAP/GAC. Heavy metal adsorption ability of the synthesized composites was carried out using Pb2+ ions at room temperature at different time intervals and different pH levels. The equilibrium adsorption data were assessed via Langmuir and Freundlich adsorption isotherm models for neat GAC, HAP/GAC and HAP/TE/GAC at pH 6. The equilibrium adsorption data for GAC, HAP/GAC and HAP/TE/GAC were well fitted with both Freundlich and Langmuir isotherm models in the given Pb2+ concentrations. The HAP/TE/GAC composite is capable of maintaining the natural function of GAC in addition to removal of bacterial contaminants and heavy metals, which can be used as a point-of-use water filter material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA