Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Environ Qual ; 49(2): 404-416, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016431

RESUMO

Biogeochemical processes in northern peatland ecosystems are influenced by seasonal temperature fluctuations that are changing with the climate. Methylmercury (MeHg), commonly produced in peatlands, affects downstream waters; therefore, it is important to understand how temperature transitions affect mercury (Hg) dynamics. We investigated how the freeze-thaw cycle influences belowground peat pore water total Hg (THg), MeHg, and dissolved organic carbon (DOC). Four large, intact peat columns were removed from an ombrotrophic peat bog and experimentally frozen and thawed. Pore water was sampled across seven depths in the peat columns during the freeze-thaw cycle and analyzed for THg, MeHg, and DOC concentrations. Freezing results showed increased concentrations of THg below the ice layers and limited change in MeHg concentrations. During thawing, THg concentrations significantly increased, whereas MeHg concentrations decreased. Limited bromide movement and depth decreases in THg and DOC concentrations were associated with increased bulk density and degree of humification in the peat. The experiment demonstrates the effects of the freeze-thaw cycle on Hg concentrations in northern peatlands. Changes to freeze-thaw cycles with climate change may exacerbate Hg cycling and transport processes in peatland environments.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio , Ecossistema , Congelamento , Solo
2.
Mycologia ; 108(4): 625-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27091387

RESUMO

Fungal endophytes are one of several groups of heterotrophic organisms that associate with living plants. The net effects of these groups of organisms on each other and ultimately on their host plants depend in part on how they facilitate or antagonize one another. In this study we quantified the associations between endophyte communities and herbivory induced by a biological control in the invasive Lythrum salicaria at various spatial scales using a culture-based approach. We found positive associations between herbivory damage and endophyte isolation frequency and richness at the site level and weak, positive associations at the leaf level. Herbivory damage was more strongly influenced by processes at the site level than were endophyte isolation frequency and community structure, which were influenced by processes at the plant and leaf levels. Furthermore, endophytic taxa found in low herbivory sites were nested subsets of those taxa found at high herbivory sites. Our findings suggest that endophyte communities of L. salicaria are associated with, and potentially facilitated by, biocontrol-induced herbivory. Quantifying the associations between heterotrophic groups ultimately may lead to a clearer understanding of their complex interactions with plants.


Assuntos
Ração Animal/microbiologia , Endófitos/classificação , Endófitos/fisiologia , Herbivoria , Lythrum/microbiologia , Biodiversidade , Geografia , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA