Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 48(10): 1492-1499, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443386

RESUMO

Psilocybin is being investigated as a treatment in adults with treatment-resistant depression (TRD). Withdrawal from serotonergic antidepressant drugs is a common prerequisite for taking part in trials of psilocybin due to the possibility of ongoing antidepressant drugs altering the psychedelic effect. This phase II, exploratory, international, fixed-dose, open-label study explored the safety, tolerability, and efficacy of a synthetic form of psilocybin (investigational drug COMP360) adjunct to a selective serotonin reuptake inhibitor in participants with TRD. Participants received a single 25 mg dose of psilocybin alongside psychological support and were followed-up for 3 weeks. The primary efficacy end point was change in the Montgomery-Åsberg Depression Rating Scale (MADRS) total score from Baseline at Week 3. Secondary end points were safety, including treatment-emergent adverse events (TEAEs), the proportion of responders and remitters at Week 3, and the change from Baseline to Week 3 in Clinical Global Impression-Severity (CGI-S) score. Nineteen participants were dosed and the mean Baseline MADRS total score was 31.7 (SD = 5.77). Twelve (63.2%) participants had a TEAE, most of which were mild and resolved on the day of onset. There were no serious TEAEs or indication of increased suicidal ideation or behavior. At Week 3, mean change from Baseline in MADRS total score was -14.9 (95% CI, -20.7 to -9.2), and -1.3 (SD = 1.29) in the CGI-S. Both response and remission were evident in 8 (42.1%) participants. Larger, comparator-controlled trials are necessary to understand if this paradigm can optimize treatment-outcome where antidepressant drug withdrawal would be problematic.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Adulto , Humanos , Antidepressivos/efeitos adversos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Método Duplo-Cego , Psilocibina/efeitos adversos , Resultado do Tratamento
2.
Front Synaptic Neurosci ; 13: 709301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504417

RESUMO

Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.

3.
Front Physiol ; 10: 1351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798458

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 µg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin's anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.

4.
Front Immunol ; 10: 2610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849925

RESUMO

Background: Hypoxic-ischemic (HI) encephalopathy is a major cause of neonatal mortality and morbidity, with a global incidence of 3 per 1,000 live births. Intrauterine or perinatal complications, including maternal infection, constitute a major risk for the development of neonatal HI brain damage. During HI, inflammatory response and oxidative stress occur, causing subsequent cell death. The presence of an infection sensitizes the neonatal brain, making it more vulnerable to the HI damage. Currently, therapeutic hypothermia is the only clinically approved treatment available for HI encephalopathy, however it is only partially effective in HI alone and its application in infection-sensitized HI is debatable. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HI. Such an alternative is targeting the complement system. Properdin, which is involved in stabilization of the alternative pathway convertases, is the only known positive regulator of alternative complement activation. Absence of the classical pathway in the neonatal HI brain is neuroprotective. However, there is a paucity of data on the participation of the alternative pathway and in particular the role of properdin in HI brain damage. Objectives: Our study aimed to validate the effect of global properdin deletion in two mouse models: HI alone and LPS-sensitized HI, thus addressing two different clinical scenarios. Results: Our results indicate that global properdin deletion in a Rice-Vannucci model of neonatal HI and LPS-sensitized HI brain damage, in the short term, clearly reduced forebrain cell death and microglial activation, as well as tissue loss. In HI alone, deletion of properdin reduced TUNEL+ cell death and microglial post-HI response at 48 h post insult. Under the conditions of LPS-sensitized HI, properdin deletion diminished TUNEL+ cell death, tissue loss and microglial activation at 48 h post-HI. Conclusion: Overall, our data suggests a critical role for properdin, and possibly also a contribution in neonatal HI alone and in infection-sensitized HI brain damage. Thus, properdin can be considered a novel target for treatment of neonatal HI brain damage.


Assuntos
Hipóxia-Isquemia Encefálica/imunologia , Neuroproteção , Properdina/fisiologia , Animais , Proteínas do Sistema Complemento/fisiologia , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Interleucina-6/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia
5.
Front Physiol ; 10: 282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941062

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS: Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS: Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION: Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.

6.
Sci Rep ; 8(1): 11066, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038334

RESUMO

Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5dione) is a polyphenol extracted from turmeric that has long been advocated for the treatment of a variety of conditions including neurodegenerative and inflammatory disorders. Despite this promise, the clinical use of curcumin has been limited by the poor solubility and low bioavailability of this molecule. In this article, we describe a novel nanocarrier formulation comprising Pluronic-F127 stabilised D-α-Tocopherol polyethene glycol 1000 succinate nanoparticles, which were used to successfully solubilize high concentrations (4.3 mg/mL) of curcumin. Characterisation with x-ray diffraction and in vitro release assays localise curcumin to the nanocarrier interior, with each particle measuring <20 nm diameter. Curcumin-loaded nanocarriers (CN) were found to significantly protect against cobalt chloride induced hypoxia and glutamate induced toxicity in vitro, with CN treatment significantly increasing R28 cell viability. Using established glaucoma-related in vivo models of ocular hypertension (OHT) and partial optic nerve transection (pONT), topical application of CN twice-daily for three weeks significantly reduced retinal ganglion cell loss compared to controls. Collectively, these results suggest that our novel topical CN formulation has potential as an effective neuroprotective therapy in glaucoma and other eye diseases with neuronal pathology.


Assuntos
Curcumina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/uso terapêutico , Difusão Dinâmica da Luz , Oftalmopatias/tratamento farmacológico , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanoestruturas/química , Hipertensão Ocular/tratamento farmacológico , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
J Lipid Res ; 58(10): 1962-1976, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28818873

RESUMO

There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient's response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F3), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F6), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA.


Assuntos
Anestésicos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Lipossomos/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos
8.
World J Gastroenterol ; 23(3): 406-413, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28210076

RESUMO

Therapeutic hypothermia is today used in several clinical settings, among them the gut related diseases that are influenced by ischemia/reperfusion injury. This perspective paved the way to the study of hibernation physiology, in natural hibernators, highlighting an unexpected importance of the gut microbial ecosystem in hibernation and torpor. In natural hibernators, intestinal microbes adaptively reorganize their structural configuration during torpor, and maintain a mutualistic configuration regardless of long periods of fasting and cold temperatures. This allows the gut microbiome to provide the host with metabolites, which are essential to keep the host immunological and metabolic homeostasis during hibernation. The emerging role of the gut microbiota in the hibernation process suggests the importance of maintaining a mutualistic gut microbiota configuration in the application of therapeutic hypothermia as well as in the development of new strategy such as the use of synthetic torpor in humans. The possible utilization of tailored probiotics to mold the gut ecosystem during therapeutic hypothermia can also be taken into consideration as new therapeutic strategy.


Assuntos
Microbioma Gastrointestinal/fisiologia , Hipotermia Induzida , Enteropatias/terapia , Simbiose/fisiologia , Torpor/fisiologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hibernação/fisiologia , Homeostase/fisiologia , Humanos , Enteropatias/microbiologia , Intestinos/microbiologia , Probióticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA