Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 365: 143327, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39271077

RESUMO

The pollution of wastewater with pharmaceuticals and endocrine-disrupting chemicals (EDCs) in populated areas poses a growing threat to humans and ecosystems. To address this serious problem, various one-dimensional (1D) hierarchical ZnO-based nanostructures inspired by Anelosimus eximius cobwebs were developed and successfully grown on a glass substrate through simple hydrothermal synthesis. The nanorods (nr) obtained during primary growth were chemically etched with KOH (ZnOnr-KOH), followed by the secondary growth of nano cobweb-like (ncw) structures using polyethyleneimine (ZnOnr/ncw). These structures were further decorated by the photoreduction of Ag nanoparticles (ZnOnr/ncw/Ag). The feasibility of ZnO-based 1D nanostructures to remove pollutants was demonstrated by degrading commonly prescribed pharmaceutical drugs (diclofenac and carbamazepine) in a miniature cuvette reactor. The photocatalytic activities for drug degradation generally decreased in the order ZnOnr/ncw/Ag > ZnOnr/ncw > ZnOnr-KOH. Additionally, the suitability of the samples for scaling up and practical application was demonstrated by photocatalytic degradation of the hormone estriol (E3) in a flow-through photoreactor. The photocatalytic degradation efficiency of E3 followed the same trend observed for drug degradation, with the complete elimination of the endocrine disruptor achieved by the best-performing ZnOnr/ncw/Ag within 4 h, due to optimized charge transfer and separation at the heterostructure interface.

2.
Materials (Basel) ; 16(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37445116

RESUMO

Unlike the conventional one-dimensional (1D) core-shell nanowires (NWs) composed of p-type shells and n-type cores, in this work, an inverse design is proposed by depositing n-type ZnO (shell) layers on the surface of p-type CuO (core) NWs, to have a comprehensive understanding of their conductometric gas-sensing kinetics. The surface morphologies of bare and core-shell NWs were investigated by field emission scanning electron microscope (FE-SEM). The ZnO shell layer was presented by overlay images taken by electron dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The pronounced crystalline plane peaks of ZnO were recorded in the compared glancing incident X-ray diffraction (GI-XRD) spectra of CuO and CuO-ZnO core-shell NWs. The ZnO shell layers broaden the absorption curve of CuO NWs in the UV-vis absorption spectra. As a result of the heterostructure formation, the intrinsic p-type sensing behavior of CuO NWs towards 250 and 500 ppm of hydrogen (H2) switched to n-type due to the deposition of ZnO shell layers, at 400 °C in dry airflow.

3.
Nanomaterials (Basel) ; 10(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075077

RESUMO

The surface of SnO2 nanowires was functionalized by chitosan for the development of room-temperature conductometric humidity sensors. SnO2 nanowires were synthesized by the seed-mediated physical-vapor-deposition (PVD) method. Chitosan layers were deposited on top of the SnO2 nanowires by spin coating. Surface morphology, crystal structure, and optical properties of the synthesized hybrid nanostructure were investigated by scanning electron microscope, grazing incidence X-ray diffraction, and UV-Vis absorption measurements. During electrical conductivity measurements, the hybrid nanostructure showed unusual behavior towards various relative humidity (RH) concentrations (25%, 50%, 75%), under UV-light irradiation, and in dark conditions. The highest sensor responses were recorded towards an RH level of 75%, resulting in 1.1 in the dark and 2.5 in a UV-irradiated chamber. A novel conduction mechanism of hybrid nanowires is discussed in detail by comparing the sensing performances of chitosan film, SnO2 nanowires, and chitosan@SnO2 hybrid nanostructures.

4.
Anal Chim Acta ; 1039: 1-23, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30322540

RESUMO

This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA