Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(4): 2385-2391, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563625

RESUMO

Fish bioacoustics, or the study of fish hearing, sound production, and acoustic communication, was discussed as early as Aristotle. However, questions about how fishes hear were not really addressed until the early 20th century. Work on fish bioacoustics grew after World War II and considerably in the 21st century since investigators, regulators, and others realized that anthropogenic (human-generated sounds), which had primarily been of interest to workers on marine mammals, was likely to have a major impact on fishes (as well as on aquatic invertebrates). Moreover, passive acoustic monitoring of fishes, recording fish sounds in the field, has blossomed as a noninvasive technique for sampling abundance, distribution, and reproduction of various sonic fishes. The field is vital since fishes and aquatic invertebrates make up a major portion of the protein eaten by a signification portion of humans. To help better understand fish bioacoustics and engage it with issues of anthropogenic sound, this special issue of The Journal of the Acoustical Society of America (JASA) brings together papers that explore the breadth of the topic, from a historical perspective to the latest findings on the impact of anthropogenic sounds on fishes.


Assuntos
Audição , Som , Animais , Humanos , Acústica , Cetáceos , Peixes
2.
Proc Biol Sci ; 290(2013): 20231839, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38087920

RESUMO

Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown. Here, using morphological, electrophysiological and modelling approaches, we show that the swim bladder of male plainfin midshipman fish (Porichthys notatus) exhibits reproductive state-dependent changes in morphology and function for sound production and reception. Non-reproductive males possess rostral 'horn-like' swim bladder extensions that enhance low-frequency (less than 800 Hz) sound pressure sensitivity by decreasing the distance between the swim bladder and inner ear, thus enabling pressure-induced swim bladder vibrations to be transduced to the inner ear. By contrast, reproductive males display enlarged swim bladder sonic muscles that enable the production of advertisement calls but also alter swim bladder morphology and increase the swim bladder to inner ear distance, effectively reducing sound pressure sensitivity. Taken together, we show that the swim bladder exhibits a seasonal functional plasticity that allows it to effectively mediate both the production and reception of sound in a vocal teleost fish.


Assuntos
Batracoidiformes , Comunicação , Som , Animais , Masculino , Acústica , Batracoidiformes/fisiologia , Estruturas Animais
3.
J Neurophysiol ; 128(5): 1344-1354, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286323

RESUMO

The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize "singing" males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms-2) that are 7-10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication.NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species' reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal's reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.


Assuntos
Batracoidiformes , Animais , Feminino , Masculino , Batracoidiformes/fisiologia , Sáculo e Utrículo , Estimulação Acústica , Audição/fisiologia , Potenciais Evocados Auditivos/fisiologia , Vocalização Animal/fisiologia
4.
Zebrafish ; 19(2): 37-48, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439045

RESUMO

Zebrafish, like all fish species, use sound to learn about their environment. Thus, human-generated (anthropogenic) sound added to the environment has the potential to disrupt the detection of biologically relevant sounds, alter behavior, impact fitness, and produce stress and other effects that can alter the well-being of animals. This review considers the bioacoustics of zebrafish in the laboratory with two goals. First, we discuss zebrafish hearing and the problems and issues that must be considered in any studies to get a clear understanding of hearing capabilities. Second, we focus on the potential effects of sounds in the tank environment and its impact on zebrafish physiology and health. To do this, we discuss underwater acoustics and the very specialized acoustics of fish tanks, in which zebrafish live and are studied. We consider what is known about zebrafish hearing and what is known about the potential impacts of tank acoustics on zebrafish and their well-being. We conclude with suggestions regarding the major gaps in what is known about zebrafish hearing as well as questions that must be explored to better understand how well zebrafish tolerate and deal with the acoustic world they live in within laboratories.


Assuntos
Condicionamento Físico Animal , Peixe-Zebra , Acústica , Animais , Audição/fisiologia , Som
5.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35332923

RESUMO

The plainfin midshipman fish (Porichthys notatus) has long served as a model organism for neuroethology research on acoustic communication and related social behaviors. Type I or 'singing' males produce highly stereotyped, periodic advertisement calls that are the longest known uninterrupted vertebrate vocalizations. Despite the extensive literature on the acoustic behaviour of this species, it remains unclear whether reproductive males signal their quality via their highly energetic, multiharmonic advertisement calls. Here, we recorded the advertisement calls of 22 reproductive type I males at night in a controlled laboratory setting in which males were housed in aquaria maintained at a constant temperature (13.9±0.3°C). The duration of the advertisement calls from type I males was observed to increase from the first call of the night to the middle call after which call duration remained steady until the early morning hours and first light. A strong positive correlation was observed between loudness (sound pressure level and maximum sound pressure level) of the advertisement call and body size (mass and standard length; rs>0.8). In addition, an asymptotic relationship was observed between the harmonic frequencies (f0-f10) of the advertisement calls and male body condition, with harmonic frequencies initially increasing with body condition indices, but then plateauing when body condition measures were high. Taken together, our results suggest that type I male advertisement calls provide reliable honest information about male quality regarding size and body condition. Such condition-dependent information of calling males could potentially be used by receptive females to help facilitate mate choice decisions.


Assuntos
Batracoidiformes , Acústica , Animais , Feminino , Masculino , Reprodução , Vocalização Animal
6.
Behav Brain Res ; 423: 113745, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35033611

RESUMO

Vocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially activated in vocally courting (humming) versus non-humming males. Herein, we demonstrate that tyrosine hydroxylase immunoreactive (TH-ir) neuron number in the noradrenergic locus coeruleus (LC) and induction of cFos (an immediate early gene product and proxy for neural activation) in the preoptic area differentiated humming from non-humming males. Furthermore, we found relationships between activation of the LC and SBN nuclei with the total amount of time that males spent humming, further reinforcing a role for these specific brain regions in the production of motivated reproductive-related vocalizations. Finally, we found that patterns of functional connectivity between catecholaminergic nuclei and nodes of the SBN differed between humming and non-humming males, supporting the notion that adaptive behaviors (such as the expression of advertisement hums) emerge from the interactions between various catecholaminergic nuclei and the SBN.


Assuntos
Batracoidiformes/fisiologia , Encéfalo/metabolismo , Catecolaminas/metabolismo , Locus Cerúleo/metabolismo , Rede Nervosa/metabolismo , Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino , Norepinefrina/metabolismo
7.
Hear Res ; 425: 108393, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34823877

RESUMO

Investigators working with fish bioacoustics used to refer to fishes that have a narrow hearing bandwidth and poor sensitivity as "hearing generalists" (or "non-specialists"), while fishes that could detect a wider hearing bandwidth and had greater sensitivity were referred to as specialists. However, as more was learned about fish hearing mechanism and capacities, these terms became hard to apply since it was clear there were gradations in hearing capabilities. Popper and Fay, in a paper in Hearing Research in 2011, proposed that these terms be dropped because of the gradation. While this was widely accepted by investigators, it is now apparent that the lack of relatively concise terminology for fish hearing capabilities makes it hard to discuss fish hearing. Thus, in this paper we resurrect the terms specialist and non-specialist but use them with modifiers to express the specific structure of function that is considered a specialization. Moreover, this resurrection recognizes that hearing specializations in fishes may not only be related to increased bandwidth and/or sensitivity, but to other, perhaps more important, aspects of hearing such as sound source localization, discrimination between sounds, and detection of sounds in the presence of masking signals.


Assuntos
Audição , Localização de Som , Animais , Peixes , Som
8.
Integr Comp Biol ; 61(1): 269-282, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33974077

RESUMO

In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergic cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.


Assuntos
Batracoidiformes , Dopamina , Orelha Interna/inervação , Rombencéfalo/fisiologia , Estações do Ano , Testosterona/farmacologia , Animais , Batracoidiformes/fisiologia , Regulação para Baixo , Orelha Interna/efeitos dos fármacos , Feminino
9.
Hear Res ; 403: 108189, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556775

RESUMO

Age-related hearing loss (ARHL), also known as presbycusis, is a widespread and debilitating condition impacting many older adults. Conventionally, researchers utilize mammalian model systems or human cadaveric tissue to study ARHL pathology. Recently, the zebrafish has become an effective and tractable model system for a wide variety of genetic and environmental auditory insults, but little is known about the incidence or extent of ARHL in zebrafish and other non-mammalian models. Here, we evaluated whether zebrafish exhibit age-related loss in auditory sensitivity. The auditory sensitivity of adult wild-type zebrafish (AB/WIK strain) from three adult age subgroups (13-month, 20-month, and 37-month) was characterized using the auditory evoked potential (AEP) recording technique. AEPs were elicited using pure tone stimuli (115-4500 Hz) presented via an underwater loudspeaker and recorded using shielded subdermal metal electrodes. Based on measures of sound pressure and particle acceleration, the mean AEP thresholds of 37-month-old fish [mean sound pressure level (SPL) = 122.2 dB ± 2.2 dB SE re: 1 µPa; mean particle acceleration level (PAL) = -27.5 ± 2.3 dB SE re: 1 ms-2] were approximately 9 dB higher than that of 20-month-old fish [(mean SPL = 113.1 ± 2.7 dB SE re: 1 µPa; mean PAL = -37.2 ± 2.8 dB re: 1 ms-2; p = 0.007)] and 6 dB higher than that of 13-month-old fish [(mean SPL = 116.3 ± 2.5 dB SE re: 1 µPa; mean PAL = -34.1 ± 2.6 dB SE re: 1 ms-2; p = 0.052)]. Lowest AEP thresholds for all three age groups were generally between 800 Hz and 1850 Hz, with no evidence for frequency-specific age-related loss. Our results suggest that zebrafish undergo age-related loss in auditory sensitivity, but the form and magnitude of loss is markedly different than in mammals, including humans. Future work is needed to further describe the incidence and extent of ARHL across vertebrate groups and to determine which, if any, ARHL mechanisms may be conserved across vertebrates to support meaningful comparative/translational studies.


Assuntos
Presbiacusia , Peixe-Zebra , Estimulação Acústica , Animais , Limiar Auditivo , Potenciais Evocados Auditivos , Som
10.
J Exp Biol ; 223(Pt 17)2020 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680899

RESUMO

The plainfin midshipman, Porichthys notatus, is a soniferous marine teleost fish that generates acoustic signals for intraspecific social communication. Nocturnally active males and females rely on their auditory sense to detect and locate vocally active conspecifics during social behaviors. Previous work showed that the midshipman inner ear saccule and lagena are highly adapted to detect and encode socially relevant acoustic stimuli, but the auditory sensitivity and function of the midshipman utricle remain largely unknown. Here, we characterized the auditory evoked potentials from hair cells in the utricle of non-reproductive type I males and tested the hypothesis that the midshipman utricle is sensitive to behaviorally relevant acoustic stimuli. Hair cell potentials were recorded from the rostral, medial and caudal regions of the utricle in response to pure tone stimuli presented by an underwater speaker. We show that the utricle is highly sensitive to particle motion stimuli produced by an underwater speaker positioned in the horizontal plane. Utricular potentials were recorded across a broad range of frequencies with lowest particle acceleration (dB re. 1 m s-2) thresholds occurring at 105 Hz (lowest frequency tested; mean threshold -32 dB re. 1 m s-2) and highest thresholds at 605-1005 Hz (mean threshold range -5 to -4 dB re. 1 m s-2). The high gain and broadband frequency sensitivity of the utricle suggest that it likely serves a primary auditory function and is well suited to detect conspecific vocalizations including broadband agonistic signals and the multiharmonic advertisement calls produced by reproductive type I males.


Assuntos
Batracoidiformes , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Feminino , Células Ciliadas Auditivas , Masculino , Sáculo e Utrículo
11.
J Exp Biol ; 223(Pt 14)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32587068

RESUMO

The plainfin midshipman fish (Porichthys notatus) is an established model for investigating acoustic communication because the reproductive success of this species is dependent on the production and reception of social acoustic signals. Previous work showed that female midshipman have swim bladders with rostral horn-like extensions that project close to the saccule and lagena, while nesting (type I) males lack such rostral swim bladder extensions. The relative close proximity of the swim bladder to the lagena should increase auditory sensitivity to sound pressure and higher frequencies. Here, we test the hypothesis that the swim bladder of female midshipman enhances lagenar sensitivity to sound pressure and higher frequencies. Evoked potentials were recorded from auditory hair cell receptors in the lagena in reproductive females with intact (control condition) and removed (treated condition) swim bladders while pure tone stimuli (85-1005 Hz) were presented by an underwater speaker. Females with intact swim bladders had auditory thresholds 3-6 dB lower than females without swim bladders over a range of frequencies from 85 to 405 Hz. At frequencies from 545 to 1005 Hz, only females with intact swim bladders had measurable auditory thresholds (150-153 dB re. 1 µPa). The higher percentage of evoked lagenar potentials recorded in control females at frequencies >505 Hz indicates that the swim bladder extends the bandwidth of detectable frequencies. These findings reveal that the swim bladders in female midshipman can enhance lagenar sensitivity to sound pressure and higher frequencies, which may be important for the detection of behaviorally relevant social signals.


Assuntos
Limiar Auditivo , Batracoidiformes , Sacos Aéreos , Animais , Feminino , Masculino , Sáculo e Utrículo , Som , Bexiga Urinária
12.
Brain Behav Evol ; 95(6): 330-340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34161950

RESUMO

The auditory system of the plainfin midshipman fish (Porichthys notatus) is an important sensory system used to detect and encode biologically relevant acoustic stimuli important for survival and reproduction including social acoustic signals used for intraspecific communication. Previous work showed that hair cell (HC) density in the midshipman saccule increased seasonally with reproductive state and was concurrent with enhanced auditory saccular sensitivity in both females and type I males. Although reproductive state-dependent changes in HC density have been well characterized in the adult midshipman saccule, less is known about how the saccule changes during ontogeny. Here, we examined the ontogenetic development of the saccule in four relative sizes of midshipman (larvae, small juveniles, large juveniles, and nonreproductive adults) to determine whether the density, total number, and orientation patterns of saccular HCs change during ontogeny. In addition, we also examined whether the total number of HCs in the saccule differ from that of the utricle and lagena in nonreproductive adults. We found that HC density varied across developmental stage. The ontogenetic reduction in HC density was concurrent with an ontogenetic increase in macula area. The orientation pattern of saccular HCs was similar to the standard pattern previously described in other teleost fishes, and this pattern of HC orientation was retained during ontogeny. Lastly, the estimated number of saccular HCs increased with developmental stage from the smallest larvae (2,336 HCs) to the largest nonreproductive adult (145,717 HCs), and in nonreproductive adults estimated HC numbers were highest in the saccule (mean ± SD = 28,479 ± 4,809 HCs), intermediate in the utricle (mean ± SD = 11,008 ± 1,619 HCs) and lowest in the lagena (mean ± SD = 4,560 ± 769 HCs).

13.
Hear Res ; 383: 107805, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614292

RESUMO

The plainfin midshipman fish (Porichthys notatus) is a nocturnal, seasonally breeding, intertidal-nesting teleost fish that produces social acoustic signals for intraspecific communication. Type I or "nesting" males produce agonistic and reproductive-related acoustic signals including a multiharmonic advertisement call during the summer breeding season. Previous work showed that type I male auditory sensitivity of the saccule, the primary midshipman auditory end organ, changes seasonally with reproductive state such that reproductive males become more sensitive and better suited than nonreproductive males to detect the dominant frequencies contained within type I vocalizations. Here, we examine whether reproductive type I males also exhibit reproductive-state dependent changes in hair cell (HC) density in the three putative auditory end organs (saccule, lagena, and utricle). We show that saccular HC density was greater in reproductive type I males compared to nonreproductive type I males, and that the increase in HC density occurs throughout the saccular epithelium in both the central and marginal epithelia regions. We also show as saccular HC density increases there is a concurrent decrease in saccular support cell (SC) density in reproductive type I males with no overall change in total cell density (i.e., HC + SC). In contrast, we did not observe any seasonal changes in HC density in the utricle or lagena between nonreproductive and reproductive type I males. In addition, we compare the saccular HC densities in reproductive type I males with that of reproductive females and show that females have greater saccular HC densities, which suggest a sexually dimorphic difference in HC receptor density between the two sexual phenotypes, at least during the summer breeding season.


Assuntos
Batracoidiformes/fisiologia , Células Ciliadas Auditivas/fisiologia , Reprodução , Sáculo e Utrículo/fisiologia , Vocalização Animal , Animais , Masculino , Fenótipo , Sáculo e Utrículo/citologia , Estações do Ano , Caracteres Sexuais
15.
J Exp Biol ; 222(Pt 15)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292164

RESUMO

The plainfin midshipman (Porichthys notatus) is an acoustically communicative teleost fish. Here, we evaluated auditory evoked potentials (AEPs) in reproductive female midshipman exposed to tones at or near dominant frequencies of the male midshipman advertisement call. An initial series of experiments characterized AEPs at behaviorally relevant suprathreshold sound levels (130-140 dB SPL re. 1 µPa). AEPs decreased in magnitude with increasing stimulus frequency and featured a stereotyped component at twice the stimulus frequency. Recording electrode position was varied systematically and found to affect AEP magnitude and phase characteristics. Later experiments employed stimuli of a single frequency to evaluate contributions of the saccule to the AEP, with particular attention to the effects of sound source azimuth on AEP amplitude. Unilateral excision of saccular otoliths (sagittae) decreased AEP amplitude; unexpectedly, decreases differed for right versus left otolith excision. A final set of experiments manipulated the sound pressure-responsive swim bladder. Swim bladder excision further reduced the magnitude of AEP responses, effectively eliminating responses at the standard test intensity (130 dB SPL) in some animals. Higher-intensity stimulation yielded response minima at forward azimuths ipsilateral to the excised sagitta, but average cross-azimuth modulation generally remained slight. Collectively, the data underscore that electrode position is an essential variable to control in fish AEP studies and suggest that in female midshipman: (1) the saccule contributes to the AEP, but its directionality as indexed by the AEP is limited, (2) a left-right auditory asymmetry may exist and (3) the swim bladder provides gain in auditory sensitivity that may be important for advertisement call detection and phonotaxis.


Assuntos
Batracoidiformes/fisiologia , Potenciais Evocados Auditivos/fisiologia , Audição/fisiologia , Estimulação Acústica , Sacos Aéreos/fisiologia , Animais , Feminino , Lateralidade Funcional , Membrana dos Otólitos , Sáculo e Utrículo/fisiologia , Vocalização Animal
16.
Curr Biol ; 29(13): 2190-2198.e3, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31204161

RESUMO

Dopamine is integral to attentional and motivational processes, but studies are largely restricted to the central nervous system. In mammals [1, 2] and fishes [3, 4], central dopaminergic neurons project to the inner ear and could modulate acoustic signals at the earliest stages of processing. Studies in rodents show dopamine inhibits cochlear afferent neurons and protects against noise-induced acoustic injury [5-10]. However, other functions for inner ear dopamine have not been investigated, and the effect of dopamine on peripheral auditory processing in non-mammalians remains unknown [11, 12]. Insights could be gained by studies conducted in the context of intraspecific acoustic communication. We present evidence from a vocal fish linking reproductive-state-dependent changes in auditory sensitivity with seasonal changes in the dopaminergic efferent system in the saccule, their primary organ of hearing. Plainfin midshipman (Porichthys notatus) migrate from deep-water winter habitats to the intertidal zone in the summer to breed. Nesting males produce nocturnal vocalizations to attract females [13]. Both sexes undergo seasonal enhancement of hearing sensitivity at the level of the hair cell [14-16], increasing the likelihood of detecting conspecific signals [17, 18]. Importantly, reproductive females concurrently have reduced dopaminergic input to the saccule [19]. Here, we show that dopamine decreases saccule auditory sensitivity via a D2-like receptor. Saccule D2a receptor expression is reduced in the summer and correlates with sensitivity within and across seasons. We propose that reproductive-state-dependent changes to the dopaminergic efferent system provide a release of inhibition in the saccule, enhancing peripheral encoding of social-acoustic signals.


Assuntos
Percepção Auditiva , Dopamina/metabolismo , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Prosencéfalo/fisiologia , Estimulação Acústica , Animais , Batracoidiformes , Feminino
17.
J Exp Biol ; 222(Pt 14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31221741

RESUMO

The plainfin midshipman fish, Porichthys notatus, is a seasonally breeding, nocturnal marine teleost fish that produces acoustic signals for intraspecific social communication. Females rely on audition to detect and locate 'singing' males that produce multiharmonic advertisement calls in the shallow-water, intertidal breeding environments. Previous work showed that females possess sexually dimorphic, horn-like rostral swim bladder extensions that extend toward the primary auditory end organs, the saccule and lagena. Here, we tested the hypothesis that the rostral swim bladder extensions in females increase auditory sensitivity to sound pressure and higher frequencies, which potentially could enhance mate detection and localization in shallow-water habitats. We recorded the auditory evoked potentials that originated from hair cell receptors in the saccule of control females with intact swim bladders and compared them with those from treated females (swim bladders removed) and type I males (intact swim bladders lacking rostral extensions). Saccular potentials were recorded from hair cell populations in vivo while behaviorally relevant pure-tone stimuli (75-1005 Hz) were presented by an underwater speaker. The results indicate that control females were approximately 5-11 dB re. 1 µPa more sensitive to sound pressure than treated females and type I males at the frequencies tested. A higher percentage of the evoked saccular potentials were recorded from control females at frequencies >305 Hz than from treated females and type I males. This enhanced sensitivity in females to sound pressure and higher frequencies may facilitate the acquisition of auditory information needed for conspecific localization and mate choice decisions during the breeding season.


Assuntos
Sacos Aéreos/fisiologia , Percepção Auditiva/fisiologia , Batracoidiformes/fisiologia , Audição/fisiologia , Sacos Aéreos/cirurgia , Animais , Potenciais Evocados Auditivos/fisiologia , Feminino , Masculino , Caracteres Sexuais
18.
Artigo em Inglês | MEDLINE | ID: mdl-30635725

RESUMO

The plainfin midshipman fish (Porichthys notatus) is a species of marine teleost that produces acoustic signals that are important for mediating social behavior. The auditory sensitivity of the saccule is well established in this species, but the sensitivity and function of the midshipman's putative auditory lagena are unknown. Here, we characterize the auditory-evoked potentials from hair cells in the lagena of reproductive type I males to determine the frequency response and auditory sensitivity of the lagena to behaviorally relevant acoustic stimuli. Lagenar potentials were recorded from the caudal and medial region of the lagena, while acoustic stimuli were presented by an underwater speaker. Our results indicate that the midshipman lagena has a similar low-frequency sensitivity to that of the midshipman saccule based on sound pressure and acceleration (re: 1 µPa and 1 ms-2, respectively), but the thresholds of the lagena were higher across all frequencies tested. The relatively high auditory thresholds of the lagena may be important for encoding high levels of behaviorally relevant acoustic stimuli when close to  a sound source.


Assuntos
Limiar Auditivo , Batracoidiformes/fisiologia , Potenciais Evocados Auditivos , Células Ciliadas Auditivas/fisiologia , Audição , Vocalização Animal , Estimulação Acústica , Animais , Masculino , Movimento (Física) , Pressão
19.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225343

RESUMO

Excessive noise exposure damages sensory hair cells, leading to permanent hearing loss. Zebrafish are a highly tractable model that have advanced our understanding of drug-induced hair cell death, yet no comparable model exists for noise exposure research. We demonstrate the utility of zebrafish as model to increase understanding of hair cell damage from acoustic trauma and develop protective therapies. We created an acoustic trauma system using underwater cavitation to stimulate lateral line hair cells. We found that acoustic stimulation resulted in exposure time- and intensity-dependent lateral line and saccular hair cell damage that is maximal at 48-72 h post-trauma. The number of TUNEL+ lateral line hair cells increased 72 h post-exposure, whereas no increase was observed in TUNEL+ supporting cells, demonstrating that acoustic stimulation causes hair cell-specific damage. Lateral line hair cells damaged by acoustic stimulation regenerate within 3 d, consistent with prior regeneration studies utilizing ototoxic drugs. Acoustic stimulation-induced hair cell damage is attenuated by pharmacological inhibition of protein synthesis or caspase activation, suggesting a requirement for translation and activation of apoptotic signaling cascades. Surviving hair cells exposed to acoustic stimulation showed signs of synaptopathy, consistent with mammalian studies. Finally, we demonstrate the feasibility of this platform to identify compounds that prevent acoustic trauma by screening a small redox library for protective compounds. Our data suggest that acoustic stimulation results in lateral line hair cell damage consistent with acoustic trauma research in mammals, providing a highly tractable model for high-throughput genetic and drug discovery studies.


Assuntos
Células Ciliadas Vestibulares , Perda Auditiva Provocada por Ruído , Sistema da Linha Lateral , Regeneração Nervosa/fisiologia , Estimulação Acústica , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Células Ciliadas Vestibulares/patologia , Células Ciliadas Vestibulares/fisiologia , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Larva , Sistema da Linha Lateral/lesões , Sistema da Linha Lateral/patologia , Sistema da Linha Lateral/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Peixe-Zebra
20.
J Assoc Res Otolaryngol ; 19(6): 741-752, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191425

RESUMO

Overexposure to loud noise is known to lead to deficits in auditory sensitivity and perception. We studied the effects of noise exposure on sensorimotor behaviors of larval (5-7 days post-fertilization) zebrafish (Danio rerio), particularly the auditory-evoked startle response and hearing sensitivity to acoustic startle stimuli. We observed a temporary 10-15 dB decrease in startle response threshold after 18 h of flat-spectrum noise exposure at 20 dB re·1 ms-2. Larval zebrafish also exhibited decreased habituation to startle-inducing stimuli following noise exposure. The noise-induced sensitization was not due to changes in absolute hearing thresholds, but was specific to the auditory-evoked escape responses. The observed noise-induced sensitization was disrupted by AMPA receptor blockade using DNQX, but not NMDA receptor blockade. Together, these experiments suggest a complex effect of noise exposure on the neural circuits mediating auditory-evoked behaviors in larval zebrafish.


Assuntos
Receptores de AMPA/metabolismo , Reflexo de Sobressalto , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Estimulação Elétrica , Larva/fisiologia , Ruído , Quinoxalinas , Valina/análogos & derivados , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA