Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628831

RESUMO

Pulmonary arterial hypertension (PAH) is a complex disorder characterized by vascular remodeling and a consequent increase in pulmonary vascular resistance. The histologic hallmarks of PAH include plexiform and neointimal lesions of the pulmonary arterioles, which are composed of dysregulated, apoptosis-resistant endothelial cells and myofibroblasts. Platelet-derived growth factor receptors (PDGFR) α and ß, colony stimulating factor 1 receptor (CSF1R), and mast/stem cell growth factor receptor kit (c-KIT) are closely related kinases that have been implicated in PAH progression. In addition, emerging data indicate significant crosstalk between PDGF signaling and the bone morphogenetic protein receptor type 2 (BMPR2)/transforming growth factor ß (TGFß) receptor axis. This review will discuss the importance of the PDGFR-CSF1R-c-KIT signaling network in PAH pathogenesis, present evidence that the inhibition of all three nodes in this kinase network is a potential therapeutic approach for PAH, and highlight the therapeutic potential of seralutinib, currently in development for PAH, which targets these pathways.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Inibidores de Proteínas Quinases , Receptores Proteína Tirosina Quinases , Proteínas Proto-Oncogênicas c-kit
2.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35680144

RESUMO

BACKGROUND: Signalling through platelet-derived growth factor receptor (PDGFR), colony-stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor kit (c-KIT) plays a critical role in pulmonary arterial hypertension (PAH). We examined the preclinical efficacy of inhaled seralutinib, a unique small-molecule PDGFR/CSF1R/c-KIT kinase inhibitor in clinical development for PAH, in comparison to a proof-of-concept kinase inhibitor, imatinib. METHODS: Seralutinib and imatinib potency and selectivity were compared. Inhaled seralutinib pharmacokinetics/pharmacodynamics were studied in healthy rats. Efficacy was evaluated in two rat models of PAH: SU5416/Hypoxia (SU5416/H) and monocrotaline pneumonectomy (MCTPN). Effects on inflammatory/cytokine signalling were examined. PDGFR, CSF1R and c-KIT immunohistochemistry in rat and human PAH lung samples and microRNA (miRNA) analysis in the SU5416/H model were performed. RESULTS: Seralutinib potently inhibited PDGFRα/ß, CSF1R and c-KIT. Inhaled seralutinib demonstrated dose-dependent inhibition of lung PDGFR and c-KIT signalling and increased bone morphogenetic protein receptor type 2 (BMPR2). Seralutinib improved cardiopulmonary haemodynamic parameters and reduced small pulmonary artery muscularisation and right ventricle hypertrophy in both models. In the SU5416/H model, seralutinib improved cardiopulmonary haemodynamic parameters, restored lung BMPR2 protein levels and decreased N-terminal pro-brain natriuretic peptide (NT-proBNP), more than imatinib. Quantitative immunohistochemistry in human lung PAH samples demonstrated increased PDGFR, CSF1R and c-KIT. miRNA analysis revealed candidates that could mediate seralutinib effects on BMPR2. CONCLUSIONS: Inhaled seralutinib was an effective treatment of severe PAH in two animal models, with improved cardiopulmonary haemodynamic parameters, a reduction in NT-proBNP, reverse remodelling of pulmonary vascular pathology and improvement in inflammatory biomarkers. Seralutinib showed greater efficacy compared to imatinib in a preclinical study.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Ratos , Humanos , Animais , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/metabolismo , Mesilato de Imatinib/uso terapêutico , Monocrotalina , Hipertensão Pulmonar Primária Familiar , Artéria Pulmonar , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Hipóxia , MicroRNAs/metabolismo , Modelos Animais de Doenças
3.
Pulm Circ ; 11(3): 20458940211031109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966541

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disorder associated with high morbidity and mortality despite currently available treatments. We compared the phosphoproteome of lung tissue from subjects with idiopathic PAH (iPAH) obtained at the time of lung transplant with control lung tissue. The mass spectrometry-based analysis found 60,428 phosphopeptide features from which 6622 proteins were identified. Within the subset of identified proteins there were 1234 phosphopeptides with q < 0.05, many of which are involved in immune regulation, angiogenesis, and cell proliferation. Most notably there was a marked relative increase in phosphorylated (S378) IKZF3 (Aiolos), a zinc finger transcription factor that plays a key role in lymphocyte regulation. In vitro phosphorylation assays indicated that GSK3 alpha and/or GSK3 beta could phosphorylate IKZF3 at S378. Western blot analysis demonstrated increased pIKZF3 in iPAH lungs compared to controls. Immunohistochemistry demonstrated phosphorylated IKZF3 in lymphocytes surrounding severely hypertrophied pulmonary arterioles. In situ hybrization showed gene expression in lymphocyte aggregates in PAH samples. A BCL2 reporter assay showed that IKZF3 increased BCL2 promoter activity and demonstrated the potential role of phosphorylation of IKZF3 in the regulation of BCL mediated transcription. Kinase network analysis demonstrated potentially important regulatory roles of casein kinase 2, cyclin-dependent kinase 1 (CDK1), mitogen-associated protein kinases (MAPKs), and protein kinases (PRKs) in iPAH. Bioinformatic analysis demonstrated enrichment of RhoGTPase signaling and the potential importance of cGMP-dependent protein kinase 1 (PRKG). In conclusion, this unbiased phosphoproteomic analysis demonstrated several novel targets regulated by kinase networks in iPAH, and reinforced the potential role of immune regulation in the pathogenesis of iPAH. The identified up- and down-regulated phosphoproteins have potential to serve as biomarkers for PAH and to provide new insights for therapeutic strategies.

5.
Pulm Circ ; 11(3): 20458940211021528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178306

RESUMO

SU5416 plus chronic hypoxia causes pulmonary arterial hypertension in rats and is assumed to occur through VEGFR2 inhibition. Cabozantinib is a far more potent VEGFR2 inhibitor than SU5416. Therefore, we hypothesized that cabozantinib plus hypoxia would induce severe pulmonary arterial hypertension in rats. Cell proliferation and pharmacokinetic studies were performed. Rats were given SU5416 or cabozantinib subcutaneously or via osmotic pump and kept hypoxic for three weeks. Right ventricular systolic pressure and hypertrophy were evaluated at days 14 and 28 following removal from hypoxia. Right ventricular fibrosis was evaluated with Picro-Sirius Red staining. Kinome inhibition profiles of SU5416 and cabozantinib were performed. Inhibitor binding constants of SU5416 and cabozantinib for BMPR2 were determined and Nanostring analyses of lung mRNA were performed. Cabozantinib was a more potent VEGFR inhibitor than SU5416 and had a longer half-life in rats. Cabozantinib subcutaneous plus hypoxia did not induce severe pulmonary arterial hypertension. Right ventricular systolic pressure at 14 and 28 days post-hypoxia was 36.8 ± 2.3 mmHg and 36.2 ± 3.4 mmHg, respectively, versus 27.5 ± 1.5 mmHg in normal controls. For cabozantinib given by osmotic pump during hypoxia, right ventricular systolic pressure was 40.0 ± 3.1 mmHg at 14 days and 27.9 ± 1.9 mmHg at 28 days post-hypoxia. SU5416 plus hypoxia induced severe pulmonary arterial hypertension (right ventricular systolic pressure 61.9 ± 6.1 mmHg and 64.9 ± 8.4 mmHg at 14 and 28 days post-hypoxia, respectively). Cabozantinib induced less right ventricular hypertrophy (right ventricular free wall weight/(left ventricular free wall weight + interventricular septum weight) at 14 days post-hypoxia compared to SU5416. Right ventricular fibrosis was more extensive in the SU5416 groups compared to the cabozantinib groups. SU5416 (but not cabozantinib) inhibited BMPR2. Nanostring analyses showed effects on pulmonary gene expression of BMP10 and VEGFR1 in the SU5416 28 days post-hypoxia group. In conclusion, selective VEGFR2 inhibition using cabozantinib plus hypoxia did not induce severe pulmonary arterial hypertension. Severe pulmonary arterial hypertension due to SU5416 plus hypoxia may be due to combined VEGFR2 and BMPR2 inhibition.

6.
Antioxidants (Basel) ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477969

RESUMO

Supplemental oxygen therapy with supraphysiological concentrations of oxygen (hyperoxia; >21% O2) is a life-saving intervention for patients experiencing respiratory distress. However, prolonged exposure to hyperoxia can compromise bacterial clearance processes, due to oxidative stress-mediated impairment of macrophages, contributing to the increased susceptibility to pulmonary infections. This study reports that the activation of the α7 nicotinic acetylcholine receptor (α7nAChR) with the delete allosteric agonistic-positive allosteric modulator, GAT107, decreases the bacterial burden in mouse lungs by improving hyperoxia-induced lung redox imbalance. The incubation of RAW 264.7 cells with GAT107 (3.3 µM) rescues hyperoxia-compromised phagocytic functions in cultured macrophages, RAW 264.7 cells, and primary bone marrow-derived macrophages. Similarly, GAT107 (3.3 µM) also attenuated oxidative stress in hyperoxia-exposed macrophages, which prevents oxidation and hyper-polymerization of phagosome filamentous actin (F-actin) from oxidation. Furthermore, GAT107 (3.3 µM) increases the (1) activity of superoxide dismutase 1; (2) activation of Nrf2 and (3) the expression of heme oxygenase-1 (HO-1) in macrophages exposed to hyperoxia. Overall, these data suggest that the novel α7nAChR compound, GAT107, could be used to improve host defense functions in patients, such as those with COVID-19, who are exposed to prolonged periods of hyperoxia.

8.
Mol Med ; 26(1): 98, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126860

RESUMO

BACKGROUND: Mechanical ventilation, in combination with supraphysiological concentrations of oxygen (i.e., hyperoxia), is routinely used to treat patients with respiratory distress, such as COVID-19. However, prolonged exposure to hyperoxia compromises the clearance of invading pathogens by impairing macrophage phagocytosis. Previously, we have shown that the exposure of mice to hyperoxia induces the release of the nuclear protein high mobility group box-1 (HMGB1) into the pulmonary airways. Furthermore, extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 (3-(2,4-dimethoxybenzylidene) anabaseine), an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could (1) inhibit hyperoxia-induced HMGB1 release into the airways; (2) enhance macrophage phagocytosis and (3) increase bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. METHOD: GTS-21 (0.04, 0.4, and 4 mg/kg) or saline were administered by intraperitoneal injection to mice that were exposed to hyperoxia (≥ 99% O2) and subsequently challenged with PA. RESULTS: The systemic administration of 4 mg/kg i.p. of GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1 compared to the saline control. To determine the mechanism of action of GTS-21, RAW 264.7 cells, a macrophage-like cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from RAW 264.7 cells and attenuated hyperoxia-induced NF-κB activation in macrophages and mouse lungs exposed to hyperoxia and infected with PA. CONCLUSIONS: Our results indicate that GTS-21 is efficacious in improving bacterial clearance and reducing acute lung injury via enhancing macrophage function by inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.


Assuntos
Compostos de Benzilideno/farmacologia , Hiperóxia/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Piridinas/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Hiperóxia/dietoterapia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Pseudomonas aeruginosa , Células RAW 264.7
9.
Mol Med ; 26(1): 63, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600307

RESUMO

BACKGROUND: Oxygen therapy, using supraphysiological concentrations of oxygen (hyperoxia), is routinely administered to patients who require respiratory support including mechanical ventilation (MV). However, prolonged exposure to hyperoxia results in acute lung injury (ALI) and accumulation of high mobility group box 1 (HMGB1) in the airways. We previously showed that airway HMGB1 mediates hyperoxia-induced lung injury in a mouse model of ALI. Cholinergic signaling through the α7 nicotinic acetylcholine receptor (α7nAChR) attenuates several inflammatory conditions. The aim of this study was to determine whether 3-(2,4 dimethoxy-benzylidene)-anabaseine dihydrochloride, GTS-21, an α7nAChR partial agonist, inhibits hyperoxia-induced HMGB1 accumulation in the airways and circulation, and consequently attenuates inflammatory lung injury. METHODS: Mice were exposed to hyperoxia (≥99% O2) for 3 days and treated concurrently with GTS-21 (0.04, 0.4 and 4 mg/kg, i.p.) or the control vehicle, saline. RESULTS: The systemic administration of GTS-21 (4 mg/kg) significantly decreased levels of HMGB1 in the airways and the serum. Moreover, GTS-21 (4 mg/kg) significantly reduced hyperoxia-induced acute inflammatory lung injury, as indicated by the decreased total protein content in the airways, reduced infiltration of inflammatory monocytes/macrophages and neutrophils into the lung tissue and airways, and improved lung injury histopathology. CONCLUSIONS: Our results indicate that GTS-21 can attenuate hyperoxia-induced ALI by inhibiting extracellular HMGB1-mediated inflammatory responses. This suggests that the α7nAChR represents a potential pharmacological target for the treatment regimen of oxidative inflammatory lung injury in patients receiving oxygen therapy.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Compostos de Benzilideno/farmacologia , Proteína HMGB1/metabolismo , Hiperóxia/complicações , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores , Suscetibilidade a Doenças , Proteína HMGB1/sangue , Proteína HMGB1/genética , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos
10.
Mol Med ; 26(1): 16, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013888

RESUMO

The Editors-in-Chief would like to alert readers that this article (Sitapara et al. 2014) is part of an investigation being conducted by the journal following the conclusions of an institutional enquiry at the University of Liverpool with respect to the quantitative mass spectrometry-generated results regarding acetylated and redox-modified HMGB1.

11.
Am J Respir Cell Mol Biol ; 55(4): 511-520, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27120084

RESUMO

Supraphysiological concentrations of oxygen (hyperoxia) can compromise host defense and increase susceptibility to bacterial infections, causing ventilator-associated pneumonia. The phagocytic activity of macrophages is impaired by hyperoxia-induced increases in the levels of reactive oxygen species (ROS) and extracellular high-mobility group box protein B1 (HMGB1). Ascorbic acid (AA), an essential nutrient and antioxidant, has been shown to be beneficial in various animal models of ROS-mediated diseases. The aim of this study was to determine whether AA could attenuate hyperoxia-compromised host defense and improve macrophage functions against bacterial infections. C57BL/6 male mice were exposed to hyperoxia (≥98% O2, 48 h), followed by intratracheal inoculation with Pseudomonas aeruginosa, and simultaneous intraperitoneal administration of AA. AA (50 mg/kg) significantly improved bacterial clearance in the lungs and airways, and significantly reduced HMGB1 accumulation in the airways. The incubation of RAW 264.7 cells (a macrophage-like cell line) with AA (0-1,000 µM) before hyperoxic exposure (95% O2) stabilized the phagocytic activity of macrophages in a concentration-dependent manner. The AA-enhanced macrophage function was associated with significantly decreased production of intracellular ROS and accumulation of extracellular HMGB1. These data suggest that AA supplementation can prevent or attenuate the development of ventilator-associated pneumonia in patients receiving oxygen support.

12.
Am J Respir Cell Mol Biol ; 52(2): 171-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24992505

RESUMO

The prolonged exposure to hyperoxia can compromise macrophage functions and contribute to the development of ventilator-associated pneumonia. High levels of extracellular high-mobility group box-1 (HMGB1) in the airways of mice exposed to hyperoxia can directly cause macrophage dysfunction. Hence, inhibition of the release of nuclear HMGB1 into the extracellular milieu may help to maintain macrophage functions under hyperoxic conditions. The present study investigates whether ethacrynic acid (EA) affects hyperoxia-induced HMGB1 release from macrophages and improves their functions. Macrophage-like RAW 264.7 cells and bone marrow-derived macrophages were exposed to different concentrations of EA for 24 hours in the presence of 95% O2. EA significantly decreased the accumulation of extracellular HMGB1 in cultured media. Importantly, the phagocytic activity and migration capability of macrophages were significantly enhanced in EA-treated cells. Interestingly, hyperoxia-induced NF-κB activation was also inhibited in these cells. To determine whether NF-κB plays a role in hyperoxia-induced HMGB1 release, BAY 11-7082, an inhibitor of NF-κB activation, was used. Similar to EA, BAY 11-7082 significantly inhibited the accumulation of extracellular HMGB1 and improved hyperoxia-compromised macrophage migration and phagocytic activity. Furthermore, 24-hour hyperoxic exposure of macrophages caused hyperacetylation of HMGB1 and its subsequent cytoplasmic translocation and release, which were inhibited by EA and BAY 11-7082. Together, these results suggest that EA enhances hyperoxia-compromised macrophage functions by inhibiting HMGB1 hyperacetylation and its release from macrophages, possibly through attenuation of the NF-κB activation. Therefore, the activation of NF-κB could be one of the underlying mechanisms that mediate hyperoxia-compromised macrophage functions.


Assuntos
Ácido Etacrínico/farmacologia , Proteína HMGB1/metabolismo , Hiperóxia/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Camundongos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia
13.
Methods Mol Biol ; 1172: 137-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24908301

RESUMO

Phagocytosis is the process by which phagocytes, including macrophages, neutrophils and monocytes, engulf and kill invading pathogens, remove foreign particles, and clear cell debris. Phagocytes and their ability to phagocytose are an important part of the innate immune system and are critical for homeostasis of the host. Impairment in phagocytosis has been associated with numerous diseases and disorders. Different cytokines have been shown to affect the phagocytic process. Cytokines including TNFα, IL-1ß, GM-CSF, and TGF-ß1 were found to promote phagocytosis, whereas high mobility group box-1 (HMGB1) inhibited the phagocytic function of macrophages. Here, we describe two commonly used methods to assess the phagocytic function of cultured macrophages, which can easily be applied to other phagocytes. Each method is based on the extent of engulfment of FITC-labeled latex minibeads by macrophages under different conditions. Phagocytic activity can be assessed either by counting individual cells using a fluorescence microscope or measuring fluorescence intensity using a flow cytometer.


Assuntos
Citometria de Fluxo/métodos , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência/métodos , Fagocitose/efeitos dos fármacos , Animais , Linhagem Celular , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interleucina-1beta/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Microesferas , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
14.
Mol Med ; 20: 238-47, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24664237

RESUMO

Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, prolonged exposure to hyperoxia compromises the ability of the macrophage to phagocytose and clear bacteria. Previously, we showed that the exposure of mice to hyperoxia elicits the release of the nuclear protein high mobility group box-1 (HMGB1) into the airways. Extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 [3-(2,4 dimethoxybenzylidene)-anabaseine dihydrochloride], an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could inhibit hyperoxia-induced HMGB1 release into the airways, enhance macrophage function and improve bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. GTS-21 (0.04, 0.4 and 4 mg/kg) or saline was systemically administered via intraperitoneal injection to mice that were exposed to hyperoxia (≥99% O2) and subsequently challenged with PA. We found that systemic administration of 4 mg/kg GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophagelike cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, hyperoxia-induced hyperacetylation of HMGB1 was significantly reduced in macrophages incubated with GTS-21. Furthermore, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from these macrophages. Our results indicate that GTS-21 is effective in improving bacterial clearance and reducing acute lung injury by enhancing macrophage function via inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.


Assuntos
Compostos de Benzilideno/farmacologia , Hiperóxia/metabolismo , Macrófagos/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Pneumonia Associada à Ventilação Mecânica/metabolismo , Piridinas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Carga Bacteriana , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Proteína HMGB1/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fagocitose/efeitos dos fármacos , Pneumonia Associada à Ventilação Mecânica/microbiologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
15.
Redox Biol ; 2: 314-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563849

RESUMO

Prolonged exposure to hyperoxia results in acute lung injury (ALI), accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1) in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to ≥99% O2 (hyperoxia) significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF) prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1) caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP), inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Anticorpos/administração & dosagem , Líquido da Lavagem Broncoalveolar/imunologia , Proteína HMGB1/metabolismo , Piruvatos/administração & dosagem , Acetilação , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/terapia , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Proteína HMGB1/antagonistas & inibidores , Injeções Espinhais , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo
16.
J Immunotoxicol ; 11(3): 260-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24099632

RESUMO

Nosocomial pneumonia (NP, or hospital-acquired pneumonia) is associated with infections originating from hospital-borne pathogens. Persistent microbial presence and acute lung injury are common features of these infections, contributing to the high mortality rates and excessive financial burden for these patients. Pseudomonas aeruginosa (PA), a gram-negative opportunistic pathogen, is one of the prominent pathogens associated with NP. PA pneumonia is characterized by excessive secretion of inflammatory cytokines, neutrophil infiltration, and subsequent lung damage. The persistent presence of PA along with overwhelming inflammatory response is suggestive of impairment in innate immunity. High mobility group box 1 (HMGB1), a recently discovered potent pro-inflammatory cytokine, plays an important role in PA lung infections by compromising innate immunity via impairing phagocyte function through toll-like receptors (TLR) TLR2 and TLR4. ODSH (2-O, 3-O-desulfated heparin), a heparin derivative with significant anti-inflammatory properties but minimal anti-coagulatory effects, has been shown to reduce neutrophilic lung injury in the absence of active microbial infections. This study examined the effects of ODSH on PA pneumonia. This study demonstrates that ODSH not only reduced PA-induced lung injury, but also significantly increased bacterial clearance. The ameliorated lung injury, together with the increased bacterial clearance, resulted in marked improvement in the survival of these animals. The resulting attenuation in lung injury and improvement in bacterial clearance were associated with decreased levels of airway HMGB1. Furthermore, binding of HMGB1 to its receptors TLR2 and TLR4 was blunted in the presence of ODSH. These data suggest that ODSH provides a potential novel approach in the adjunctive treatment of PA pneumonia.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Infecção Hospitalar/tratamento farmacológico , Heparina/análogos & derivados , Pulmão/efeitos dos fármacos , Pneumonia Pneumocócica/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/fisiologia , Animais , Carga Bacteriana/efeitos dos fármacos , Infecção Hospitalar/imunologia , Modelos Animais de Doenças , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Heparina/administração & dosagem , Humanos , Imunidade Inata/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/imunologia , Infecções por Pseudomonas/imunologia , Regulação para Cima
17.
Am J Pathol ; 183(2): 422-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770347

RESUMO

The proinflammatory response leads to various types of pathologic pathways, including the development of preterm birth. Preterm birth occurs in 12% of deliveries in the United States and causes more than 70% of perinatal morbidity and mortality. The most common cause of spontaneous preterm birth is intrauterine infection in the mother. There is accumulating evidence indicating that the release of proinflammatory cytokines plays a critical role in the pathogenesis of inflammation-associated premature delivery. We found that the common organic solvent, N,N-dimethylacetamide (DMA), prevents endotoxin-induced preterm birth in timed pregnant C57BL/6 embryonic day (E)15.5 mice and rescues their pups from spontaneous abortion at doses many-fold lower than those currently used clinically and in a dose-dependent fashion. We also provide histologic evidence that DMA suppresses the endotoxin-triggered proinflammatory response by significantly attenuating inflammatory cell infiltration of placental tissue. Furthermore, immunoblotting analysis of placental tissue harvested from our murine models revealed DMA-mediated regulation of expression of the proinflammatory cytokines IL-1ß, tumor necrosis factor α, and IL-6, and increased expression of the regulatory inflammatory cytokine IL-10. By using in vitro studies, we provide evidence that DMA suppresses macrophage function and that this small molecule prevents nuclear translocation of nuclear factor-kB. These results suggest that DMA represents a newly discovered, nontoxic therapy for a broad range of inflammatory disorders.


Assuntos
Acetamidas/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/efeitos dos fármacos , Endotoxinas/toxicidade , Nascimento Prematuro/prevenção & controle , Animais , Feminino , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Gravidez , Nascimento Prematuro/induzido quimicamente
18.
Am J Respir Cell Mol Biol ; 48(3): 280-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23087050

RESUMO

Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, a significant number of patients on ventilators exhibit enhanced susceptibility to infections and develop ventilator-associated pneumonia (VAP). Pseudomonas aeruginosa (PA) is one of the most common species of bacteria found in these patients. Previously, we demonstrated that prolonged exposure to hyperoxia can compromise the ability of alveolar macrophages (AMs), an essential part of the innate immunity, to phagocytose PA. This study sought to investigate the potential molecular mechanisms underlying hyperoxia-compromised innate immunity against bacterial infection in a murine model of PA pneumonia. Here, we show that exposure to hyperoxia (≥ 99% O2) led to a significant elevation in concentrations of airway high mobility group box-1 (HMGB1) and increased mortality in C57BL/6 mice infected with PA. Treatment of these mice with a neutralizing anti-HMGB1 monoclonal antibody (mAb) resulted in a reduction in bacterial counts, injury, and numbers of neutrophils in the lungs, and an increase in leukocyte phagocytic activity compared with mice receiving control mAb. This improved phagocytic function was associated with reduced concentrations of airway HMGB1. The correlation between phagocytic activity and concentrations of extracellular HMGB1 was also observed in cultured macrophages. These results indicate a pathogenic role for HMGB1 in hyperoxia-induced impairment with regard to a host's ability to clear bacteria and inflammatory lung injury. Thus, HMGB1 may provide a novel molecular target for improving hyperoxia-compromised innate immunity in patients with VAP.


Assuntos
Proteína HMGB1/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/microbiologia , Pneumonia Bacteriana/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Proteína HMGB1/imunologia , Hiperóxia/imunologia , Hiperóxia/patologia , Imunidade Inata/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Fagocitose/imunologia , Fagocitose/fisiologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Pneumonia Associada à Ventilação Mecânica/imunologia , Pneumonia Associada à Ventilação Mecânica/metabolismo , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pneumonia Associada à Ventilação Mecânica/patologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Respiração Artificial/efeitos adversos
19.
Mol Med ; 18: 477-85, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22314397

RESUMO

Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )(-/-) mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa-induced neutrophil recruitment, lung injury and bacterial infection in both CFTR(-/-) and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.


Assuntos
Fibrose Cística/imunologia , Proteína HMGB1/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Feminino , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA