Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(6): 168487, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341172

RESUMO

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.


Assuntos
Membrana Celular , Escherichia coli , Exorribonucleases , Multimerização Proteica , Mutação Silenciosa , Escherichia coli/enzimologia , Exorribonucleases/química , Exorribonucleases/genética , Cinética , Dobramento de Proteína , Multimerização Proteica/genética , Membrana Celular/enzimologia
2.
J Mol Biol ; 436(6): 168459, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296158

RESUMO

One-third of protein domains in the CATH database contain a recently discovered tertiary topological motif: non-covalent lasso entanglements, in which a segment of the protein backbone forms a loop closed by non-covalent interactions between residues and is threaded one or more times by the N- or C-terminal backbone segment. Unknown is how frequently this structural motif appears across the proteomes of organisms. And the correlation of these motifs with various classes of protein function and biological processes have not been quantified. Here, using a combination of protein crystal structures, AlphaFold2 predictions, and Gene Ontology terms we show that in E. coli, S. cerevisiae and H. sapiens that 71%, 52% and 49% of globular proteins contain one-or-more non-covalent lasso entanglements in their native fold, and that some of these are highly complex with multiple threading events. Further, proteins containing these tertiary motifs are consistently enriched in certain functions and biological processes across these organisms and depleted in others, strongly indicating an influence of evolutionary selection pressures acting positively and negatively on the distribution of these motifs. Together, these results demonstrate that non-covalent lasso entanglements are widespread and indicate they may be extensively utilized for protein function and subcellular processes, thus impacting phenotype.


Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Dobramento de Proteína , Proteoma , Escherichia coli , Proteoma/química , Saccharomyces cerevisiae/genética , Humanos , Domínios Proteicos
3.
Nat Commun ; 14(1): 3689, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344452

RESUMO

Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so. Thus, some misfolded subpopulations commonly bypass chaperones. Using multi-scale simulation models we observe that the misfolded structures that bypass various chaperones can do so because their structures are highly native like, leading to a situation where chaperones do not distinguish between the folded and near-native-misfolded states. More broadly, these results provide a mechanism by which long-time scale changes in protein structure and function can persist in cells because some misfolded states can bypass components of the proteostasis machinery.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Chaperonas Moleculares/metabolismo
4.
Nat Chem ; 15(3): 308-318, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36471044

RESUMO

The specific activity of enzymes can be altered over long timescales in cells by synonymous mutations that alter a messenger RNA molecule's sequence but not the encoded protein's primary structure. How this happens at the molecular level is unknown. Here, we use multiscale modelling of three Escherichia coli enzymes (type III chloramphenicol acetyltransferase, D-alanine-D-alanine ligase B and dihydrofolate reductase) to understand experimentally measured changes in specific activity due to synonymous mutations. The modelling involves coarse-grained simulations of protein synthesis and post-translational behaviour, all-atom simulations to test robustness and quantum mechanics/molecular mechanics calculations to characterize enzymatic function. We show that changes in codon translation rates induced by synonymous mutations cause shifts in co-translational and post-translational folding pathways that kinetically partition molecules into subpopulations that very slowly interconvert to the native, functional state. Structurally, these states resemble the native state, with localized misfolding near the active sites of the enzymes. These long-lived states exhibit reduced catalytic activity, as shown by their increased activation energies for the reactions they catalyse.


Assuntos
Biossíntese de Proteínas , Mutação Silenciosa , Códon/metabolismo , RNA Mensageiro/genética , Ribossomos/metabolismo , Escherichia coli/genética
5.
Cell Rep ; 40(3): 111096, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858568

RESUMO

Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured. These proteins are abundant and highly structured. Notably, they display a tendency to form ß sheet secondary structures, have more complex folding topology, and are enriched for chaperone-binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides are also more often components of stable protein complexes in comparison with other proteins. Combining these findings suggests the existence of a specific subset of proteins in the cell that is particularly vulnerable to misfolding and aggregation following synthesis before reaching the native state.


Assuntos
Dobramento de Proteína , Proteoma , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Proteoma/metabolismo
6.
Nat Commun ; 13(1): 3081, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654797

RESUMO

Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.


Assuntos
Proteínas de Escherichia coli , Proteostase , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA