RESUMO
Discovery of meningeal lymphatic vessels (LVs) in the dura mater, also known as dural LVs (dLVs) that depend on vascular endothelial growth factor C expression, has raised interest in their possible involvement in Alzheimer's disease (AD). Here we find that in the APdE9 and 5xFAD mouse models of AD, dural amyloid-ß (Aß) is confined to blood vessels and dLV morphology or function is not altered. The induction of sustained dLV atrophy or hyperplasia in the AD mice by blocking or overexpressing vascular endothelial growth factor C, impaired or improved, respectively, macromolecular cerebrospinal fluid (CSF) drainage to cervical lymph nodes. Yet, sustained manipulation of dLVs did not significantly alter the overall brain Aß plaque load. Moreover, dLV atrophy did not alter the behavioral phenotypes of the AD mice, but it improved CSF-to-blood drainage. Our results indicate that sustained dLV manipulation does not affect Aß deposition in the brain and that compensatory mechanisms promote CSF clearance.
RESUMO
Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.
Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido , RNA Circular , Transdução de Sinais , RNA Longo não Codificante/metabolismo , IsquemiaRESUMO
This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Camundongos , Animais , Feminino , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Transcriptoma , Camundongos Endogâmicos C57BL , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Tamanho da PartículaRESUMO
BACKGROUND: Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aß) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aß. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. METHODS: Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aß pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. RESULTS: We show that PIEZO1 orchestrates Aß clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aß inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aß clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. CONCLUSION: These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aß burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/metabolismo , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Transgênicos , Microglia/metabolismoRESUMO
Stroke is one of the leading causes of death worldwide and currently only few therapeutic options are available. Stroke is a sexually dimorphic disease contributing to the difficulty in finding efficient treatments. Poststroke neuroinflammation is geared largely by brain microglia and infiltrating peripheral immune cells and largely contributes to sex differences in the outcome of stroke. Microglia, since very early in the development, are sexually divergent, imprinting specific sex-related features. The diversity in terms of microglial density, morphology, and transcriptomic and proteomic profiles between sexes remains in the adulthood and is likely to contribute to the observed sex-differences on the postischemic inflammation. The impact of sexual hormones is fundamental: changes in terms of risk and severity have been observed for females before and after menopause underlining the importance of altered circulating sexual hormones. Moreover, aging is a driving force for changes that interact with sex, shifting the inflammatory response in a sex-dependent manner. This review summarizes the present literature on sex differences in stroke-induced inflammatory responses, with the focus on different microglial responses along lifespan.